
Challenge
To build secure software, builders must ensure that they have pro-

tected every relevant potential vulnerability. Yet, to attack software, 

attackers often have to find and exploit only a single exposed vulner-

ability. To identify and mitigate relevant vulnerabilities in software, 

the development community needs more than just good software 

engineering and analytical practices, a solid grasp of software security 

features, and a powerful set of tools. All of these things are necessary 

but not sufficient. 

To respond effectively, the community needs to think outside of 

the box and have a firm grasp of the attacker’s perspective and the 

approaches used to exploit software systems. CAPEC provides this 

information to the community in order to help enhance security 

throughout the software development lifecycle and to support the 

needs of developers,  testers, and educators.

Solution
“Attack Patterns” are descriptions of common methods for exploiting 

software providing the attacker’s perspective and guidance on ways to 

mitigate their effect. They derive from the concept of design patterns 

applied in a destructive rather than constructive context and are gen-

erated from in-depth analysis of specific real-world exploit examples.

This information when captured in such a formalized way can 

bring considerable value for software security considerations through 

all phases of the software development lifecycle and other security-

related activities including identification of relevant security require-

ments, misuse, and abuse; context for architectural risk analysis and 

guidance for security architecture; context for appropriate risk-based 

and penetration testing; lessons 

learned from security incidents 

into preventative guidance; and 

identification of appropriate pre-

scriptive organizational policies 

and standards. While many other 

tools (e.g., misuse/abuse cases, se-

curity requirements, threat models, 

knowledge of common weaknesses 

and vulnerabilities, coding rules, 

and attack trees) are also useful for 

building secure software, attack patterns play a unique role amid this 

larger architecture of software security knowledge and techniques.

Initially released in 2007, the CAPEC List continues to evolve with 

public participation and contributions to form a structured mecha-

nism for identifying, collecting, refining, and sharing attack patterns 

among the cyber security community.

Participation Requested
Developers, testers, educators, and other community members are 

invited to participate in this growing community effort by submitting 

new attack patterns for inclusion in the CAPEC List and joining our 

CAPEC Community Email Discussion List on the CAPEC Web site.

Common Attack Pattern Enumeration and Classification — CAPEC™
A Community Knowledge Resource for Building Secure Software

CAPEC is a publicly available catalog of 

attack patterns along with a comprehensive 

schema and classification taxonomy created 

to assist in the building of secure software. By 

structuring the definition of attack patterns 

as part of a broader integrated software 

assurance knowledge architecture that 

includes similar knowledge-structuring efforts 

such as Common Weakness Enumeration 

(CWE™), Common Vulnerabilities and 

Exposures (CVE®), Malware Attribute 

Enumeration and Characterization (MAEC™), 

and Cyber Observable eXpression (CybOX™), 

CAPEC supports the needs of developers, 

testers, and educators to build secure software 

and assists in enhancing security throughout 

the software development lifecycle. 

Attack patterns examples: 
■■ HTTP response splitting

■■ SQL injection

■■ XSS in HTTP query strings

■■ Session fixation

■■ Phishing

■■ Filter failure through buffer overflow

■■ Removing or short-circuiting guard logic

■■ Lifting data embedded in client 
distributions

■■ Subvert code-signing facilities

■■ Reflection attack in an authentication 
protocol

■■ Cause web server misclassification

■■ Rainbow table password cracking

■■ Forced deadlock

■■ Cache poisoning

■■ Restful privilege escalation

The MITRE Corporation maintains CAPEC and its public 

Web site and provides impartial technical guidance to 

the CAPEC Community throughout the process to ensure 

CAPEC serves the public interest. MITRE

202 Burlington Road, Bedford, MA 01730-1420 

www.mitre.orgCAPECCAPECTM

capec.mitre.org

Attack Patterns Are:

• Powerful mechanisms to capture 
and communicate the attacker’s 
perspective.

• Descriptions of common methods for 
exploiting software.

• Derived from the concept of design 
patterns applied in a destructive 
rather than constructive context 
and are generated from in-depth 
analysis of specific real-world exploit 
examples.

http://capec.mitre.org
http://capec.mitre.org


MITRE Learn More – https://capec.mitre.org 

Name HTTP Response Splitting

Typical Severity High
Description HTTP Response Splitting causes a vulnerable web server to respond to a maliciously crafted request by sending an HTTP response stream such that 

it gets interpreted as two separate responses instead of a single one. This is possible when user-controlled input is used unvalidated as part of the 
response headers. An attacker can have the victim interpret the injected header as being a response to a second dummy request, thereby causing the 
crafted contents to be displayed and possibly cached. To achieve HTTP Response Splitting on a vulnerable web server, the attacker: 

1. Identifies the user-controllable input that causes arbitrary HTTP header injection. 

2. Crafts a malicious input consisting of data to terminate the original response and start a second response with headers controlled by the attacker. 

3. Causes the victim to send two requests to the server. The first request consists of maliciously crafted input to be used as part of HTTP response 
headers and the second is a dummy request so that the victim interprets the split response as belonging to the second request. 

Attack Prerequisites User-controlled input used as part of HTTP header 
Ability of attacker to inject custom strings in HTTP header 
Insufficient input validation in application to check for input sanity before using it as part of response header

Typical Likelihood of 
Exploit

Medium

Methods of Attack Injection 
Protocol Manipulation

Examples-Instances In the PHP 5 session extension mechanism, a user-supplied session ID is sent back to the user within the Set-Cookie HTTP header. Since the contents 
of the user-supplied session ID are not validated, it is possible to inject arbitrary HTTP headers into the response body. This immediately enables HTTP 
Response Splitting by simply terminating the HTTP response header from within the session ID used in the Set-Cookie directive.  CVE-2006-0207

Attacker Skill or 
Knowledge Required

High - The attacker needs to have a solid understanding of the HTTP protocol and HTTP headers and must be able to craft and inject requests to elicit 
the split responses.

Resources Required None
Probing Techniques With available source code, the attacker can see whether user input is validated or not before being used as part of output. This can also be achieved 

with static code analysis tools 
If source code is not available, the attacker can try injecting a CR-LF sequence (usually encoded as %0d%0a in the input) and use a proxy such as Paros 
to observe the response. If the resulting injection causes an invalid request, the web server may also indicate the protocol error.

Indicators-Warnings of 
Attack

The only indicators are multiple responses to a single request in the web logs. However, this is difficult to notice in the absence of an application filter 
proxy or a log analyzer. There are no indicators for the client

Solutions and 
Mitigations

To avoid HTTP Response Splitting, the application must not rely on user-controllable input to form part of its output response stream. Specifically, 
response splitting occurs due to injection of CR-LF sequences and additional headers. All data arriving from the user and being used as part of HTTP 
response headers must be subjected to strict validation that performs simple character-based as well as semantic filtering to strip it of malicious 
character sequences and headers.

Attack Motivation-
Consequences

Execute unauthorized code or commands 
Gain privileges/assume identity

Context Description HTTP Response Splitting attacks take place where the server script embeds user-controllable data in HTTP response headers. This typically happens when 
the script embeds such data in the redirection URL of a redirection response (HTTP status code 3xx), or when the script embeds such data in a cookie 
value or name when the response sets a cookie. In the first case, the redirection URL is part of the Location HTTP response header, and in the cookie 
setting, the cookie name/value pair is part of the Set- Cookie HTTP response header.

Injection Vector User-controllable input that forms part of output HTTP response headers
Payload Encoded HTTP header and data separated by appropriate CR-LF sequences. The injected data must consist of legitimate and well-formed HTTP headers 

as well as required script to be included as HTML body.
Activation Zone API calls in the application that set output response headers.
Payload Activation 
Impact

The impact of payload activation is that two distinct HTTP responses are issued to the target, which interprets the first as response to a supposedly valid 
request and the second, which causes the actual attack, to be a response to a second dummy request issued by the attacker.

CIA Impact Confidentiality Impact: High  Integrity Impact: High Availability Impact: Low

Related Weaknesses CWE113 - HTTP Response Splitting - Targeted 
CWE74 - Injection - Secondary 
CWE697 - Insufficient Comparison - Targeted  
CWE707 - Improper Enforcement of Message or Data Structure - Targeted 
CWE713 - OWASP Top Ten 2007 Category A2 - Injection Flaws - Targeted

Relevant Security 
Requirements

All client-supplied input must be validated through filtering and all output must be properly escaped.

Related Security 
Principles

Reluctance to Trust

Related Guidelines Never trust user-supplied input.
References G. Hoglund and G. McGraw. Exploiting Software: How to Break Code. Addison-Wesley, February 2004.

For enhanced descriptions of this example CAPEC-ID, see http://capec.mitre.org/data/definitions/34.html.

Example Attack Pattern



TAXII is a U.S. Department of Homeland Security–led effort of the office of Cybersecurity and Communications. MITRE, 

operating as DHS’s FFRDC, manages the TAXII website, community engagement, and discussion lists to enable open and 

public collaboration with all stakeholders.

TAXII defines a set of services and message exchanges that, when implemented, 

enable sharing of actionable cyber threat information across organization and 

product/service boundaries. TAXII, through its member specifications, defines 

concepts, protocols, and message exchanges to exchange cyber threat information 

for the detection, prevention, and mitigation of cyber threats. TAXII is not a specific 

information sharing initiative or application and does not attempt to define trust 

agreements, governance, or other non-technical aspects of cyber threat information 

sharing. Instead, TAXII empowers organizations to achieve improved situational 

awareness about emerging threats, and enables organizations to easily share the 

information they choose with the partners they choose.

TAXII use cases include:
■■ Public Alerts or Warnings

■■ Private Alerts and Reports

■■ Push and Pull Content Dissemination

■■ Set-up and Management of Data Sharing Between Parties

Challenge
The gathering and use of detailed cyber intelligence is the best 

defense against today’s determined cyber adversaries. “Cyber 

intelligence” — or the collecting, analyzing, and countering of 

cyber security threat information — starts with gathering infor-

mation about attacks, such as spear-phishing email header and 

content, urls to malicious links, and malware analysis-derived 

artifacts like Command and Control (C2) domain names and IP 

addresses. With a corpus of threat data, skilled cyber analysts 

can group patterns of similar activity, attribute activity to certain 

threat actors, quickly identify and implement mitigation strate-

gies, and anticipate the launch of similar attacks in the future.

To fully realize the benefits of cyber intelligence, organizations 

need to share cyber threat data, if not defensive strategies and 

more, with trusted partners. Current cyber threat information 

sharing, however, is often either a time-consuming, manual pro-

cess or a limited-scope automation effort tied to particular cyber 

threat information sharing community or technology.

Solution
TAXII fills this void. The TAXII services and message ex-

changes are designed to enhance interoperability of different 

cyber security solutions and vendors are encouraged to incor-

porate support for TAXII within their cyber security products 

and services. By supporting TAXII, vendors enhance the value of 

their solutions by allowing their customers to leverage actionable 

intelligence from multiple sources.

TAXII’s goal is to help add automation to the processes of 

existing cyber threat information sharing communities and to 

help establish new communities of sharing by simplifying the 

technical aspects of cyber threat information exchange. It is 

recognized that sharing communities are highly diverse and can-

not be reduced to a single sharing model. For this reason, TAXII 

uses a modular design that can accommodate a wide array of 

sharing models. Individual services in TAXII are optional for any 

given implementation, allowing enterprises to include only the 

services for their particular sharing model. 

Trusted Automated eXchange of Indicator Information — TAXII™
Enabling Cyber Threat Information Exchange

TAXII and STIX

TAXII is the preferred 

method of exchanging infor-

mation represented using the 

Structured Threat Information 

Expression (STIX™) language, 

enabling organizations to 

share structured cyber threat 

information in a secure and 

automated manner.

TM

taxii.mitre.org



MITRE Learn More – https://taxii.mitre.org 

Sharing models supported by TAXII include (but are not lim-

ited to):

Source-Subscriber

A single entity publishes information out to a group of con-

sumers. This is a common 

model in commercial envi-

ronments, where the data 

source is a vendor and the 

subscribers purchase access 

to the vendor’s informa-

tion. This is also a common 

model for free alerts from some authoritative source.

Peer-to-Peer

A group of data producers 

and data consumers establish 

direct relationships with each 

other. The group may have 

a single governing policy, 

but all sharing exchanges are 

between individuals.

Hub-and-Spoke

A group of data producers and consumers share information 

with each other, but instead of 

sending directly, the informa-

tion is sent to a central hub, 

which then handles dissemi-

nation to all the other spokes 

as appropriate. This model 

can be viewed as being similar 

to e-mail distribution lists, where a sender provides a message to 

a mailing-list service, which then forwards the message on to all 

the members of the list.

Push or Pull Sharing

TAXII supports both push and pull messaging in all models, 

allowing sharing scenarios where data consumers are automati-

cally provided with new data, or where the consumer can request 

updates at times of their choosing. Data producers in a TAXII 

architecture can choose whether data consumers can pull data 

from the producer, whether data is pushed from the producer, or 

whether a mixture of the two methods is supported.

Lightweight, Non-Disruptive 
Design

Existing sharing communities often have established an in-

frastructure for storing and managing threat information. TAXII 

is designed to enable the exchange of this information without 

impacting existing data management infrastructure. TAXII defines 

network-level messages and services, but does not impose signifi-

cant requirements on behavior below the network layer. As such, 

TAXII is intended to be layered on top of existing data manage-

ment schemes with minimal disruption. For similar reasons, 

enterprises without existing infrastructure are free to use their own 

favored data management schemes, confident that such schemes 

can integrate with TAXII services and messages.

Cyber threat information is frequently sensitive and organiza-

tions may be highly selective as to what information is shared 

with specific parties. The information that factors in to such 

decisions can vary from organization to organization. Rather 

than attempting to standardize such behavior, TAXII focuses on 

ensuring secure transport of the information over the wire and 

leaves decisions as to what is shared with whom to the back-end 

infrastructure of the enterprise. TAXII imposes no requirements 

or limits on sharing decisions and allows organizations to decide 

what information is visible to individual requesters using their 

native decision processes.

TAXII leverages existing protocols and specifications wherever 

possible. The TAXII core services are designed in a fashion that is 

neutral with regard to network protocols and data formats. TAXII 

defines bindings to specific network protocols and data formats 

separately from the core services. Implementers can select the 

bindings they wish to use or even define their own. The fact that 

all bindings share the same understanding of the TAXII services 

and messages a party that can only support a very constrained 

set of protocols or formats can still make use of the services and 

messages of TAXII, and thus would have a window for receiving 

threat information from a significantly larger set of sources.

Feedback Requested
TAXII Community members can make contributions to TAXII 

development and manage issue tracking for the TAXII specifica-

tions, schemas, and supporting information by joining the TAXII 

Community at https://taxii.mitre.org/community/. Members of 

the cyber security community are invited to participate in this 

growing community effort. 



STIX is a U.S. Department of Homeland Security–led effort of the office of Cybersecurity and 

Communications. MITRE, operating as DHS’s FFRDC, manages the STIX website, community 

engagement, and discussion lists to enable open and public collaboration with all stakeholders.

STIX is a collaborative, community-driven effort to define and develop a 

structured language to represent cyber threat information. The STIX Language 

conveys the full range of potential cyber threat information and strives to be 

fully expressive, flexible, extensible, automatable, and as human-readable as 

possible. All interested parties are welcome to participate in evolving STIX as part 

of its open, collaborative community.

STIX use cases include:

■■ Analyzing Cyber Threats

■■ Specifying Indicator Patterns for Cyber Threats

■■ Managing Cyber Threat Prevention and Response Activities 

■■ Sharing Cyber Threat Information 

Challenge
Organizations today must maintain a “cyber threat intelligence” 

capability as a key part of their defense against determined cyber 

adversaries. Examples of cyber intelligence include understand-

ing and characterizing information such as what sort of attack 

actions have occurred and are likely to occur; how can these 

actions be detected and recognized; how can they be mitigated; 

who are the relevant threat actors; what are they trying to 

achieve; what are their capabilities, in the form of tactics, tech-

niques, and procedures (TTP) they have leveraged over time and 

are likely to leverage in the future; what sort of vulnerabilities, 

misconfigurations, or weaknesses they are likely to target; what 

actions have they taken in the past; etc.

A key component of success for this capability is information 

sharing with partners, peers, and others they select to trust. But 

while cyber threat intelligence and information sharing can help 

focus and prioritize the use of the immense volumes of complex 

cyber security information organizations face today, they have 

a foundational need for common, structured representations of 

this information to make it tractable. 

Solution
STIX is a community-driven solution to this, providing struc-

tured representations of cyber threat information that is ex-

pressive, flexible, extensible, automatable, and readable. STIX 

enables the sharing of comprehensive, rich, “high-fidelity” cyber 

threat information across organizational, community, and prod-

uct/service boundaries. STIX extends simple indicator sharing 

to enable the management and exchange of significantly more 

expressive sets of indicators as well as other full-spectrum cyber 

threat information. 

STIX Language

The STIX Language is a community effort being developed in 

collaboration with any and all interested parties for the specifica-

tion, capture, characterization, and communication of standard-

ized cyber threat information. It does this in a structured fashion 

to support more effective cyber threat management processes 

and application of automation. 

STIX provides a common mechanism for addressing struc-

tured cyber threat information across and among a wide range 

of use cases improving consistency, efficiency, interoperability, 

Structured Threat Information eXpression — STIX™
A Structured Language for Cyber Threat Intelligence Information

STI
TM

STIX and TAXII

Trusted Automated  eXchange 

of Indicator Information (TAXII™) 

is the preferred method of 

exchanging information repre-

sented using the STIX Language, 

enabling organizations to share 

structured cyber threat informa-

tion in a secure and automated 

manner.



MITRE Learn More – https://stix.mitre.org 

and overall situational awareness. In addition, STIX provides a 

unifying architecture tying together a diverse set of cyber threat 

information including:

■■ Cyber Observables (e.g., a registry key is created, network 
traffic occurs to specific IP addresses, email from a specific 
address is observed, etc.)

■■ Indicators (potential observables with attached meaning and 
context)

■■ Incidents (instances of specific adversary actions)

■■ Adversary Tactics, Techniques, and Procedures (including 
attack patterns, malware, exploits, kill chains, tools, infra-
structure, victim targeting, etc.)

■■ Exploit Targets (e.g., vulnerabilities, weaknesses or 
configurations)

■■ Courses of Action (e.g., incident response or vulnerability/
weakness remedies)

■■ Cyber Attack Campaigns (sets of Incidents and/or TTP with 
a shared intent)

■■ Cyber Threat Actors (identification and/or characterization 
of the adversary)

To enable such an aggregate solution to be practical for any 

single use case, existing structured languages may be lever-

aged where appropriate such as Cyber Observable Expression 

(CybOX™), Malware Attribute Enumeration and Characteriza-

tion (MAEC™), Common Attack Pattern Enumeration and Clas-

sification (CAPEC™), etc., and numerous flexibility mechanisms 

are designed into the language.

In particular, almost everything in this definitively-structured 

language is optional such that any single use case could leverage 

only the portions of STIX that are relevant for it — from a single 

field to the entire language or anything in between — without 

being overwhelmed by the rest. 

Feedback Requested
STIX Community members make contributions to STIX devel-

opment and manage issue tracking for the STIX schemas, tools, 

specifications, and supporting information by joining the STIX 

Community at https://stix.mitre.org/community/. Members of the 

cyber security community are also invited to participate in this 

growing community effort.

STIX Architecture

Related Incidents(*)

Related Threat Actors(*)

Potential COA(*)

Exploit Target(*)

ObservedTTP(*)

Attribution(*)

Related TTP(*)

Related Indicators(*)

Indicated TTP(*)

Historical
Campaigns(*)

COATaken(*)

COARequested(*)
Associated
Actors(*)

Associated
Campaigns(*)

Observables(*)

LeveragedTTP(*)

Related Indicator(*)
Related Observables(*)

RelatedTTP(*)

Related
Indicators(*)

Sub-Observables(*)

SuggestedCOA(*)

Related Incidents(*)



OVAL Language
The OVAL community has developed three schemas writ-

ten in Extensible Markup Language (XML) to serve as the 

framework and vocabulary of the OVAL Language. These 

schemas correspond to the three steps of the assessment 

process: an OVAL System Characteristics schema for rep-

resenting machine state, an OVAL Definition schema for 

expressing a specific machine state, and an OVAL Results 

schema for reporting the results of an assessment. The 

community has also developed numerous platform-specif-

ic component schemas for specifying and representing a 

system’s machine state on those platforms.

OVAL Repository
Content written in the OVAL Language—XML docu-

ments such as OVAL Definitions files—is located in the 

many repositories found within the community. One such 

repository, the OVAL Repository hosted by The MITRE 

Corporation, is the central meeting place for the OVAL 

Community to discuss, analyze, store, and disseminate 

OVAL Definitions. Each definition in the OVAL Repository 

determines whether a specified software vulnerability, con-

figuration issue, program, or patch is present on a system.

OVAL Adoption
Vendor organizations adopt OVAL by incorporating OVAL 

into their information security products and services, 

while users support OVAL by deploying products and ser-

vices that have adopted OVAL to further enhance the secu-

rity of their enterprises. A product or service is consid-

ered an OVAL Adopter if it uses OVAL as appropriate for 

communicating details of vulnerabilities, patches, security 

configuration settings, and other machine states.

To be an official OVAL Adopter a product or service 

must complete the OVAL Adoption Program Process:
■■ Make a declaration to adopt one or more OVAL Adop-
tion Capabilities.

■■ Implement the OVAL Adoption Capabilities in the 
product or service.

■■ Complete the OVAL Adoption Questionnaire that 
provides an overview of how the OVAL Adoption 
Capabilities have been integrated into the product or 
service.

See the “Requirements and Recommendations for OVAL 

Adoption and Use” document and the formal OVAL 

Adoption Program description on the OVAL Web site for 

details.

OVAL Community
The information security community contributes to the 

development of OVAL by participating in the creation of 

the OVAL Language on the OVAL Developer’s Forum and 

by writing definitions for the OVAL Repository through 

the OVAL Repository Forum. An OVAL Board consist-

ing of representatives from a broad spectrum of  industry 

Open Vulnerability and Assessment Language — OVAL®

A Community-Developed Language for Determining Vulnerability and Configuration Issues on Computer Systems

OVAL is an international, information security community 

effort to standardize how to assess and report upon the 

machine state of computer systems. OVAL includes a language 

to encode system details, and an assortment of content 

repositories held throughout the community.

The language provides a framework for making assertions 

about a machine’s state by standardizing the three main steps 

of the assessment process: representing the machine state of 

a system for testing; analyzing the system for the presence of 

the specified machine state (vulnerability, configuration, patch 

state, etc.); and reporting the results of this assessment.

The repositories are collections of publicly available and open 

content that utilize the language.

The MITRE Corporation maintains OVAL and its public Web site, 

manages the adoption program, and provides impartial technical 

guidance to the OVAL Board and Community throughout the 

process to ensure OVAL serves the public interest.

MITRE
202 Burlington Road, Bedford, MA 01730-1420 

www.mitre.org

http://oval.mitre.org


MITRE

OVAL
Definitions

OVAL
Results

OVAL System
Characteristics

OVAL
AnalysisOVAL

Definitions

OVAL
Results

OVAL System
Characteristics

Vulnerable

Not Vulnerable

�

Vulnerable
state

Current 
state

OVAL
Analysis

A commercial vulnerability scanner  
      can read OVAL Definitions and 
          use them to gather config-
      uration information to generate 
an OVAL System Characteristics file.

 Using the OVAL Definitions and  
     OVAL System Characteristics files, 
          a commercial vulnerability 
     scanner performs the OVAL
Analysis and generates OVAL Results.

Government agencies such as 
NSA and NIST develop “Best 
Practices” policy for system security.

CERT-CC, US-CERT, and other 
organizations publish security 
advisories that warn of current threats 
and system vulnerabilities.

Specific machine configuration details 
from Advisory and Policy documents are 
extracted and encoded as an OVAL 
Definition.

OVAL Definitions are structured to 
indicate what configuration 
information needs to be collected from 
an individual system.

Results of analysis are 
formatted as an OVAL 
Results document.

The OVAL Definitions from Step 2, and 
the OVAL System Characteristics from 
Step 3 are compared to determine if 
the current system state is vulnerable 
or not vulnerable.

Configuration policy

Security advisories

Data collected from computers

Definitions are generated

Analysis results 

Analysis 

Commercial 
Product

Commercial 
Product

Learn More – https://oval.mitre.org 

OVAL Definitions

How the three core components of the OVAL Language work together 
during a standard vulnerability assessment process

and government organizations from 

around the world oversees and ap-

proves the OVAL Language and 

monitors the posting of the definitions 

hosted in the OVAL Repository. This 

means that OVAL, which is funded by 

the Office of Cybersecurity and Com-

munications at the U.S. Department 

of Homeland Security for the benefit 

of the community, reflects the insights 

and combined expertise of the broad-

est possible collection of security and 

system administration professionals 

worldwide.

OVAL Definitions are machine-
readable, gold standard tests that 
definitively determine whether the 
specified software vulnerability, 
configuration issue, program, or patch 
is present on a system. There are four 
main classes of OVAL Definitions:

OVAL Vulnerability Definitions 
Tests that determine the presence of 
vulnerabilities on systems.

OVAL Compliance Definitions 
Tests that determine whether the 
configuration settings of a system 
meets a security policy.

OVAL Inventory Definitions Tests 
that determine whether a specific 
piece of software is installed on a 
system.

OVAL Patch Definitions Tests that 
determine whether a particular patch 
is appropriate for a system. 

OVAL Definitions include metadata, a 
high-level summary, and the detailed 
definition. Definition metadata provides 
the OVAL-ID, status of the definition 
(Draft, Interim, or Accepted), the CVE 
name or other reference on which the 
definition (or definitions) is based, the 
version of the official OVAL Definition 
Schema the definition works with, a brief 
description of the security issue covered 
in the definition, the main author, and a 
list of the significant contributors to the 
development of the definition.

The high-level summary includes the 
following: “Vulnerable software exists,” 
which states the specific operating 
system (OS), the name of the file with 
the vulnerability in it, application version, 
and patch status; and “Vulnerable 
configuration,” which indicates if 
the service is running or not, specific 
configuration settings, and workarounds. 

The detailed portion of definitions 
provides the logic for checking 
for the system characteristics (OS 
installed, settings in the OS, software 
applications installed, and settings 
in applications) to indicate that 
vulnerable software exists, and 
configuration attributes (registry key 
values, file system attributes, and 
configuration files) to indicate that a 
vulnerable configuration exists.

Any member of the OVAL Community 
may submit OVAL Definitions, as 
detailed on the OVAL Web site. 
OVAL Content hosted in other OVAL 
repositories is also often available to 
the public.



TM

Challenge
Modern methods for detecting and combating malware 

often rely on the characterization of malware attributes 

and behaviors. The use of static and dynamic analysis 

techniques allows for an encompassing profile of malware 

to be constructed based upon its disassembled binary and 

observed run-time behavior. 

Yet, the lack of an accepted standard for unambiguously 

characterizing malware means that there is no clear method 

for communicating the specific malware attributes detected in 

malware by the analyses, nor for enumerating its fundamen-

tal makeup. The results are non-interoperable and disparate 

malware reporting between organizations, disjointed or 

inaccurate malware attribution, the duplication of malware 

analysis efforts, increased difficulty in determining the sever-

ity of a malware threat, and a greater period of time between 

malware infection and detection/response, among others.

Solution
MAEC solves these problems. The characterization of 

malware using abstract patterns offers a wide range of ben-

efits over the usage of physical signatures, and allows for 

the accurate encoding of how malware operates and the 

specific actions that it performs. Such information can not 

only be used for malware detection, but also for assessing 

the end-goal the malware is pursuing and the correspond-

ing threat that it represents.

Focusing on the attributes and behaviors of malware 

facilitates detection and analysis of emerging, sophisticated 

malware threats that circumvent the traditional signature-

based and heuristic approaches. Characterizing malware in 

a standard way supports collaboration across organizations 

and the identification of common behavior, functionality, 

and code bases across instances of malware. 

MAEC achieves this end result by utilizing three com-

munity-developed components to define the standardized 

MAEC Language:

■■ Element dictionaries

■■ Schemas for defining vocabulary syntax

■■ Standard output formats based on schemas

MAEC Language
MAEC is being developed as a formal language for 

characterizing attributes and behaviors of all types of 

malware. Initially MAEC will focus on characterizing the 

most common malware types, including Trojans, worms, 

and rootkits, but will ultimately be applicable to more 

esoteric malware types. As a language, MAEC will have a 

grammar and vocabulary that provide a standard means 

of communicating information about malware attributes. 

Malware Attribute Enumeration and Characterization 
— MAEC™
A Structured Language for Attribute-Based Malware Characterization

MAEC is a structured language for encoding and 

communicating high-fidelity information about malware 

based upon attributes such as behaviors, artifacts, and 

attack patterns.

By eliminating the ambiguity and inaccuracy that 

currently exists in malware descriptions and by reducing 

reliance on signatures, MAEC aims to: 

■■ Improve human-to-human, human-to-tool, tool-
to-tool, and tool-to-human communication about 
malware

■■ Allow for the faster development of  countermeasures 
by enabling the ability to leverage responses to 
previously  observed malware instances 

■■ Reduce potential duplication of malware analysis 
efforts by researchers

maec.mitre.org

The MITRE Corporation maintains MAEC and its public 

Web site presence and provides impartial technical 

guidance to the MAEC Community throughout the process 

to ensure MAEC serves the public interest.

MITRE
202 Burlington Road, Bedford, MA 01730-1420 

www.mitre.org



MITRE

MAEC Community members can make 
contributions to MAEC development 
and manage issue tracking for the 
MAEC schemas, utilities, specifications, 
and supporting information by joining 

the MAEC Community at https://maec.
mitre.org/community/. Members of the 
cyber security community are invited to 
participate in this growing community 
effort.

Feedback Requested

Learn More – https://maec.mitre.org 

MAEC Dictionaries – a series of dictionaries for defining 

three distinct levels of malware elements—low-level ac-

tions, mid-level behaviors, and high-level mechanisms.

MAEC Schemas – a syntax for the vocabulary of actions, 

behaviors, and taxonomies, and an interchange format for 

structured information about these elements.

MAEC Use Cases
As a domain-specific language for the 

characterization of malware, MAEC 

has a broad range of uses, especially 

with regards to malware analysis and 

anti-malware operations. The follow-

ing are just a few of the use cases that 

MAEC will support:

MAEC’s core components include a vocabulary, grammar, 
and forms of standardized output.

Dictionaries Schemas MAEC Package

High-level taxonomies

Mid-level behaviors

Low-level actions

Namespaces

Relationships

Properties

Metadata

Malware subject

Vocabulary Grammar Output formats

MAEC Bundle

MAEC Output Formats – standard output formats that 

can be used for particular use cases, including the de-

scription of  a malware instance, malware intrusion set, 

or malware families in terms of MAEC’s dictionaries and 

schemas.

Analysis-Oriented Use Cases
■■ Common Vocabulary for Malware 
Analysis

■■ Enhanced Data Sharing Between 
Malware Repositories

■■ Objective Criteria for Anti-mal-
ware Tool Assessment

Operations-Oriented Use 
Cases

■■ Uniform Malware Reporting 
Format

■■ Malware Detection

■■ Malware Threat Assessment

■■ Malware Response

■■ Malware/Attacker Correlation



CybOX is a U.S. Department of Homeland Security–led effort of the office of Cybersecurity and 

Communications. MITRE, operating as DHS’s FFRDC, manages the CybOX website, community 

engagement, and discussion lists to enable open and public collaboration with all stakeholders.

CybOX provides a common structure  for representing cyber observables across and among the operational areas 

of enterprise cyber security that improves the consistency, efficiency, and interoperability of deployed tools and 

processes, as well as increases overall situational awareness by enabling the potential for detailed automatable 

sharing, mapping, detection, and analysis heuristics.

International in scope and free for public use, CybOX is a  

structured language for the specification, capture, characteriza-

tion, and communication of events or stateful properties that 

are observable in the operational domain. A wide variety of 

high-level cyber security use cases rely on such information 

including event management/ logging, malware characteriza-

tion, intrusion detection, incident response/management, attack 

pattern characterization, indicator sharing, etc. CybOX provides 

a common structure for representing cyber observables across 

and among these use cases thereby improving consistency, ef-

ficiency, interoperability, and overall situational awareness for 

the enterprise.

Challenge
The concept of observable events or properties in the opera-

tional cyber realm is a central underlying element of many of the 

different activities involved in cyber security. Until recently, no 

uniform structured mechanism existed for specifying, captur-

ing, characterizing, or communicating these cyber observables. 

Each activity area, each use case and often each supporting tool 

vendor uses its own unique approach that inhibits consistency, 

efficiency, interoperability and overall situational awareness.

Solution
CybOX is a standardized language for representing cyber 

observables, whether dynamic events or stateful properties 

that are observable in the operational cyber domain. CybOX 

is not targeted at a single cyber security use case but rather is 

intended to be flexible enough to offer a common solution for 

all cyber security use cases requiring the ability to deal with 

cyber observables. It is also intended to be flexible enough to 

allow both the high-fidelity description of instances of cyber 

observables that have been measured in an operational context 

as well as more abstract patterns for potential observables that 

may be targets for observation and analysis apriori. By specify-

ing a common structured schematic mechanism for these cyber 

observables, CybOX enables detailed automatable sharing, 

mapping, detection and analysis heuristics.

CybOX is targeted to support a wide range of relevant cyber 

security domains including:

■■ Threat assessment and characterization (detailed attack 
patterns)

■■ Malware characterization

■■ Operational event management

■■ Logging

Examples of cyber observables 

include:

■■ A Registry Key is created

■■ A File is deleted

■■ A Mutex exists

■■ Specific HTTP Get Request 
received

■■ A file has a specific MD5 hash

■■ Data is sent to an address on a 
socket

■■ Network traffic occurs to specific 
IP addresses

■■ Email from a specific address is 
observed

■■ Application logs show 
communication on certain ports

■■ A service’s configuration is 
changed

■■ A remote thread is created

Cyber Observable eXpression — CybOX™
A Structured Language for Cyber Observables



MITRE Learn More – https://cybox.mitre.org

■■ Cyber situational awareness

■■ Incident response

■■ Indicator sharing

■■ Digital forensics

■■ Etc.

Through utilization of the standardized 

CybOX Language, relevant observable 

events or properties can be captured and 

shared, defined in indicators and rules, or 

used to adorn the appropriate portions of 

attack patterns and malware profiles in or-

der to tie the logical pattern constructs to 

real-world evidence of their occurrence or 

presence for attack detection and charac-

terization. Incident response and manage-

ment can then take advantage of all of 

these capabilities to investigate occurring 

incidents, improve overall situational 

awareness and improve future attack de-

tection, prevention and response.

Supported Use Cases
CybOX is intended to be flexible enough 

to provide a common foundation for a 

wide diversity of cyber security use cases 

requiring the ability to deal with cyber 

observables. For most use cases, the utili-

zation of CybOX should be indirect with 

primary focus on the use case domain-

specific standard or solution which lever-

ages CybOX as an enabler. See table at 

right for examples of current use cases.

Feedback Requested
CybOX Community members can make 

contributions to CybOX development 

and manage issue tracking for the CybOX 

schemas, utilities, specifications, and sup-

porting information by joining the CybOX 

Community at https://cybox.mitre.org/

community/. Members of the cyber secu-

rity community are invited to participate 

in this growing community effort. 

Supported Use Case Relevant Process Domain Specific Standard
Analyze event data from diverse set of 
sensors of different types and different 
vendors

Event Management CybOX

Detect malicious activity utilizing attack 
patterns

Attack Detection Common Attack Pattern Enumeration 
and Classification (CAPEC™)

Detect malicious activity utilizing 
malware behavior characterizations

Attack Detection Malware Attribute Enumeration and 
Characterization (MAEC™)

Enable automated attack detection 
signature rule generation

Attack Detection CybOX, MAEC, CAPEC, STIX

Characterize malicious activity utilizing 
attack patterns

Incident Response/
Management

CAPEC, STIX

Identify new attack patterns Threat Characterization CAPEC

Prioritize existing attack patterns based 
on tactical reality

Security Testing and Secure 
Development

CAPEC, STIX

Characterize malware behavior Malware Analysis MAEC

Guide malware analysis utilizing attack 
patterns

Malware Analysis MAEC, CAPEC

Detect malware effects Attack Detection and 
Incident Response/
Management

STIX, MAEC, Open Vulnerability and 
Assessment Language (OVAL®)

Enable collaborative attack indicator 
sharing

Information Sharing  STIX, TAXII

Empower and guide incident 
management utilizing attack patterns 
and malware characterizations

Incident Response/
Management

STIX, CAPEC, MAEC, CybOX

Enable consistent, useful and 
automation-capable incident alerts 

Incident Response/
Management

STIX, MAEC, CAPEC, CEE

Enable automatic application of 
mitigations specified in attack patterns

Incident Response/
Management

STIX

Enable incident information sharing Incident Response/
Management

STIX

Support correlation between observed 
properties and malicious indicators as 
part of digital forensics

Digital Forensics Digital Forensics XML (DFXML), STIX, 
MAEC, CAPEC

Capture digital forensics analysis results Digital Forensics Ongoing work to refine DFXML based 
on CybOX

Capture digital forensics provenance 
information

Digital Forensics Ongoing work to refine DFXML based 
on CybOX

Enable collaborative sharing of digital 
forensics information

Digital Forensics Ongoing work to refine DFXML based 
on CybOX, STIX, TAXII

Enable explicit and implicit sharing 
controls for cyber observable 
information

Information Sharing STIX, CybOX, TAXII

Enable new levels of meta-analysis on 
operational cyber observables

Cyber Situational 
Awareness

CybOX, STIX

http://cybox.mitre.org


Challenge
When a security analysis of a software application is per-

formed, such as when using an automated code assessment 

tool, developers often face hundreds or thousands of indi-

vidual findings for individual weaknesses that are identified 

in their code. In certain circumstances, a software weak-

ness can lead to an exploitable vulnerability. For example, a 

buffer overflow weakness might arise from an input rou-

tine where the programmer does not properly validate the 

length of an input buffer. This weakness only contributes to 

a vulnerability if the input can be influenced by a malicious 

party, and if that malicious input can inserted into a buffer 

that is smaller than the malicious input.

Due to the high volume of reported weakness find-

ings, developers are forced to prioritize which issues they 

should investigate and fix first. Similarly, when assessing 

design and architecture choices and their associated weak-

nesses, there needs to be a method for prioritizing them 

relative to each other and with the other issues in the ap-

plication. Finally, software consumers want to know what 

issues they should worry about versus others, and what to 

ask about to get a more secure product from their vendors 

and suppliers.

Further complicating the problem, the importance of 

a weakness usually depends on the business or mission 

needs that the software is supporting, the kinds of tech-

nologies in use, and the threat environment.

In short, people need to be able to reason and commu-

nicate about the relative importance of different weak-

nesses. While various scoring methods are used today, 

they are either ad hoc or inappropriate for use against the 

evaluation of software security.

Solution
CWSS provides a mechanism for scoring weaknesses in a 

consistent, flexible, open manner while enabling an orga-

nization to reflect the context of their business domain(s). 

It is a collaborative, community-based effort that is ad-

dressing the needs of stakeholders across government, 

academia, and industry. CWSS is a part of the project, 

co-sponsored by the Software Assurance program in the 

office of Cybersecurity and Communications of the U.S. 

Department of Homeland Security (DHS).

CWSS: 
■■ Provides a common framework for prioritizing se-
curity errors (“weaknesses”) that are discovered in 
software applications 

■■ Provides a quantitative measurement of the un-
fixed weaknesses that are present within a software 
application 

■■ Can be used by developers to prioritize unfixed weak-
nesses within their own software 

■■ In conjunction with CWRAF, can be used by consum-
ers to identify the most important weaknesses for their 
business domains, in order to inform their acquisi-
tion and protection activities as one part of the larger 
process of achieving software assurance. 

Common Weakness Scoring System — CWSS™
Scoring the Severity of Software Weaknesses

CWSS is a mechanism for scoring the severity of 

Common Weakness Enumeration (CWE™) entries 

discovered in an enterprise’s software applications, 

especially when used in conjunction with the Common 

Weakness Risk Analysis Framework (CWRAF™). 

CWSS can also be used by individual developers 

to prioritize unfixed weaknesses within their own 

software.

MITRE

202 Burlington Road, Bedford, MA 01730-1420 

www.mitre.org

The MITRE Corporation maintains CWSS on the Common 

Weakness Enumeration (CWE™) website and provides impartial 

technical guidance to the CWSS community throughout the 

process to ensure CWSS serves the public interest.

TMSS
Learn More – https://cwe.mitre.org/cwss

cwe.mitre.org/cwss

http://cwe.mitre.org/cwraf/
http://cwe.mitre.org/
http://cwe.mitre.org/cwraf/
http://cwe.mitre.org/cwraf/


CWRAF provides a framework for scoring software weak-

nesses in a consistent, flexible, open manner, while accom-

modating context of an organization’s business domain(s). 

It is a collaborative, community-based effort that is ad-

dressing the needs of its stakeholders across government, 

academia, and industry. CWRAF is a part of the Common 

Weakness Enumeration (CWE™) project, co-sponsored 

by the Software Assurance program in the office of Cyber-

security and Communications of the U.S. Department of 

Homeland Security (DHS).

CWRAF benefits:
■■ Includes a mechanism for measuring risk of security-
relevant software development errors (“weaknesses”) in 
a way that is closely linked with the potential impact to 
an organization’s business or mission. 

■■ Supports the automatic selection and prioritization of 
relevant weaknesses, customized to the specific needs 
of the organization’s business or mission. 

■■ Can be used by organizations in conjunction with 
CWSS to identify the most important weaknesses for 
their business domains, in order to inform their acqui-
sition and protection activities as one part of the larger 
process of achieving software assurance. 

■■ Leverages the construct in CWE’s Common Conse-
quences information, where all CWEs, if manifested 
in an exploitable manner, result in the attacker being 
able to cause one or more of the following technical 
impacts: modify data; read data; DoS: unreliable execu-
tion; DoS: resource consumption; execute unauthor-

ized code or commands; gain privileges /assume iden-
tity; bypass protection mechanism; and hide activities.

Vignettes Explained
CWRAF and CWSS allow users to rank classes of weak-

nesses independent of any particular software package, in 

order to prioritize them relative to each other (e.g., “buffer 

overflows are higher priority than memory leaks”). This 

method of prioritization, sometimes referred to as a “Top-N 

list,” is used by the CWE/SANS Top 25, OWASP Top Ten, 

and similar efforts. CWRAF and CWSS allow users to cre-

ate their own custom Top-N lists.

Within CWRAF, a vignette provides a shareable, formal-

ized way to define a particular environment or opera-

tional context, i.e., the role that software plays within that 

environment, and an organization’s priorities with respect 

to software security of that piece of software. It identifies 

essential resources and capabilities, as well as their impor-

tance relative to security principles such as confidentiality, 

integrity, and availability. 

Vignettes allow CWSS to support diverse audiences 

who may have different requirements for how to prioritize 

weaknesses. CWSS scoring can occur within the context of 

a vignette. 

There are currently 23 vignettes that are being actively de-

veloped for CWRAF within the categories, or “domains,” of 

Banking/Finance, Chemical, e-Commerce, Emergency Ser-

vices, Energy, e-Voting, Human Resources, National Defense, 

Public Health, Social Media, and Telecommunications. The 

CWRAF community will help to refine these and develop 

others over time including for Food & Water, Manufactur-

ing, Homeland Security, Government (other), Teleworking, 

and Shipping/Transportation. Feedback is welcome.

Common Weakness Risk Analysis Framework — CWRAF™
Prioritizing the Severity of Software Weaknesses in Your Own Organization

CWRAF is a way for organizations to apply the 

Common Weakness Scoring System (CWSS™) using 

specialized scenarios, or “vignettes,” in order to prioritize 

those Common Weakness Enumeration (CWE™) entries 

that are most relevant to their own businesses, missions, 

and deployed technologies.

MITRE

202 Burlington Road, Bedford, MA 01730-1420 

www.mitre.org

The MITRE Corporation maintains CWRAF on the Common 

Weakness Enumeration (CWE™) website and provides impartial 

technical guidance to the CWRAF community throughout the 

process to ensure CWRAF serves the public interest.

Learn More - https://cwe.mitre.org/cwraf

TMRAF
cwe.mitre.org/cwraf

http://cwe.mitre.org/cwraf/modeling_the_env.html
http://cwe.mitre.org/cwraf/stakeholders.html
http://cwe.mitre.org/data/index.html
http://cwe.mitre.org/data/index.html
http://cwe.mitre.org/data/index.html
http://cwe.mitre.org/cwss/index.html
http://cwe.mitre.org/top25/index.html
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
http://cwe.mitre.org/cwraf/data/vignettes.html
http://cwe.mitre.org/cwraf/data/domains.html
http://cwe.mitre.org/cwss/
http://cwe.mitre.org/


TM

Challenge
Software acquirers want assurance that the software 

products they are obtaining are reviewed for known types 

of exploitable security weaknesses, and the acquisition 

groups in large government and private organizations are 

moving forward to use these types of reviews as part of 

future contracts. Until recently the tools and services that 

could be used for this type of review were new at best and 

there were no nomenclature, taxonomies, or standards to 

define the capabilities and coverage of them. That made it 

difficult to comparatively decide which tool or service was 

best suited for a particular job. What was needed was a 

standard list and classification of software security weak-

nesses to serve as a unifying language of discourse and a 

measuring stick for tools and services.

Solution
CWE is a community-developed formal list or dictionary 

of common software weaknesses. Leveraging the diverse 

thinking on this topic from academia, the commercial 

sector, and government, CWE unites the most valuable 

breadth and depth of content and structure to serve as a 

standard definition. Our objective is to help shape and 

mature the code security assessment industry and also 

dramatically accelerate the use and utility of software 

assurance capabilities for organizations in reviewing the 

software systems they acquire or develop.

Working from these collections—as well as those con-

tained in the other information sources listed on the CWE 

Web site—we developed the current draft of the CWE List, 

which includes over 600 separate weaknesses and we have 

created a branding and compliance program to acknowl-

edge and validate tools and services using CWE identifiers.

Community
The following organizations are actively contributing to 

the development of CWE: Apple, Cenzec, Core Security, 

HP, GrammaTech, Klocwork, IBM, Parasoft, Veracode, 

Common Weakness Enumeration — CWE™
A Community-Developed Dictionary of Software Weakness Types

CWE, targeted to developers and security practitioners, is a formal list of 
software weaknesses that:

Serves as a common language for describing software security 
weaknesses in architecture, design, or code. 

Serves as a measuring stick for software security tools targeting 
these weaknesses. 

Provides a common baseline definition for weakness identification, 
mitigation, and prevention efforts. 

Is industry-endorsed via the CWE Community and CWE-Compatible 
Products.

Some Common Types of Software Weaknesses:
■■ Buffer overflows, format strings, etc. 
■■ Structure and validity problems 
■■ Common special element manipulations 
■■ Channel and path errors 
■■ Handler errors 
■■ User interface errors 
■■ Pathname traversal and equivalence errors 
■■ Authentication errors 
■■ Resource management errors 
■■ Insufficient verification of data 
■■ Code evaluation and injection 
■■ Randomness and predictability

MITRE

202 Burlington Road, Bedford, MA 01730-1420 

www.mitre.org

The MITRE Corporation maintains CWE and its public Web site, 

manages the compatibility program, and provides impartial 

technical guidance to the CWE Community throughout the 

process to ensure CWE serves the public interest.

CWE

CWE 
Compatibility

Test Repositories

Univ. of 
Maryland

MIT Lincoln Labs

GMU

UC
Berkley

Purdue

Oracle

Security 
University

North Carolina State 
University (NCSU)

IBM

SPI Dynamics

VERACODE

Coverity

NSA/CTC

James Madison 
University (JMU)

Kestrel 
Technology

WatchFire

Cenzic

Core Security

Parasoft

Stanford
SEI - CERT CC

Unisys

KDM Analytics

Building CWE & Consensus

CVE

NVD

Previous 
Research

         Other   
      Publicly
   Available 
Work

CVEs 
from

PLOVER

Publicly Available: 
Security Taxonomies, 
Research, and 
Checklists

DHS / NIST SAMATE

Preliminary

OMG 
SwA 
SIG OWASP/ 

WASC

DHS
SwA 
CBK

DHS
BSI

Web Site

SEI 
Coding 

Standards

SANS
Skills

Assessment



MITRE Learn More – https://cwe.mitre.org 

Symantec, CAST, EC-Council, EMC, 

Japan’s Information-technology Pro-

motion Agency, ISC2, NIST, and Red 

Hat.

We are also leveraging the work, 

ideas, and contributions of researchers 

at Armorize Technologies, Carnegie 

Mellon’s CERT/CC,  CERIAS/Purdue 

University, Cigital, KDM Analytics, 

Kestrel Technology, Oracle, OWASP, 

SANS Institute, SkillBridge, UNISYS, 

WASC, and WhiteHat Security. See 

the CWE Web site for a complete list 

of participants and how your organi-

zation can contribute.

CWE Entries include:
■ name of the weakness 

type
■ description of the type
■ alternate terms for the 

weakness
■ description of the be-

havior of the weakness
■ description of the ex-

ploit of the weakness
■ likelihood of exploit for 

the weakness
■ description of the 

consequences of the 
exploit

■ potential mitigations
■ node relationship 

information
■ source taxonomies
■ code samples for the 

languages/architectures
■ CVE identifiers of vul-

nerabilities for which 
that type of weakness 
exists 

■ references

CWE List
International in scope and free for 

public use, CWE provides a unified, 

measurable set of software weaknesses 

that will enable more effective discus-

sion, description, selection, and use of 

software security tools and services that 

can find these weaknesses in source 

code.

The CWE List is currently offered in 

many views including:
Dictionary - an alphabetic view of 
the list’s enumerated weaknesses
Classification Tree - provides 
access to individual weaknesses 

with more simplicity to 
various potential users through 
classification layering
Graphical - allows users to better 
understand individual weaknesses 
in the classification tree through 
their broader context and 
relationships
Slices-by-Topic - provide selective 
subsets of CWE by language or 
some other attribute

XML/XSD of CWE content — in 

toto or by slice — is also available. 

Additional formats and views will be 

added in the future. Visit the CWE 

Web site for the latest information.

CWE ID 415 Double Free

Description The product calls free() twice on the same memory address, potentially leading to modification of unexpected memory locations.

Likelihood of Exploit Low to Medium

Common Consequences Access control: Doubly freeing memory may result in a write-what-where condition, allowing an attacker to execute arbitrary code.

Potential Mitigations Architecture and Design: Choose a language that provides automatic memory management. 
Implementation: Ensure that each allocation is freed only once. After freeing a chunk, set the pointer to NULL to ensure the pointer cannot be 
freed again. In complicated error conditions, be sure that clean-up routines respect the state of allocation properly. If the language is object 
oriented, ensure that object destructors delete each chunk of memory only once. 
Implementation: Use a static analysis tool to find double free instances.

Demonstrative Examples Example 1: The following code shows a simple example of a double free vulnerability. Double free vulnerabilities have two common (and 
sometimes overlapping) causes: - Error conditions and other exceptional circumstances - Confusion over which part of the program is 
responsible for freeing the memory Although some double free vulnerabilities are not much more complicated than the previous example, most 
are spread out across hundreds of lines of code or even different files. Programmers seem particularly susceptible to freeing global variables 
more than once. 
Example 2: While contrived, this code should be exploitable on Linux distributions which do not ship with heap-chunk check summing turned 
on.

Observed Examples CVE-2002-0059 - Double free from malformed compressed data. 
CVE-2003-0545 - Double free from invalid ASN.1 encoding. 
CVE-2003-1048 - Double free from malformed GIF. 
CVE-2004-0642 - Double free resultant from certain error conditions. 
CVE-2004-0772 - Double free resultant from certain error conditions. 
CVE-2005-0891 - Double free from malformed GIF. 
CVE-2005-1689 - Double free resultant from certain error conditions.

Node Relationships Child Of - Operation on Resource in Wrong Phase of Lifetime (666) in View (1000) 
Child Of - Duplicate Operations on Resource (675) in View (1000) 
Child Of - Resource Management Errors (399) in View (699)
Peer Of - Use After Free (416) in View (699 & 1000)
Peer Of - Write-what-where Condition (123) in View (700)
Child Of - Indicator of Poor Code Quality (398) in View (700)
Child Of - Weaknesses that Affect Memory (633) in View (631)
Child Of - CERT C Secure Coding Section 08 – Memory Management (MEM) (742) in View (734)
Member Of - Weaknesses Examined by SAMATE (630) in View (630)
Peer Of - Signal Handler Race Condition (364) in View (1000)

Source Taxonomies PLOVER - DFREE - Double-Free Vulnerability
7 Pernicious Kingdoms - Double Free 
CLASP - Doubly freeing memory
CERT C Secure Coding - MEM00-C - Allocate and free memory in the same module, at the same level of abstraction
CERT C Secure Coding - MEM01-C - Store a new value in pointers immediately after free()
CERT C Secure Coding - MEM31-C - Free dynamically allocated memory exactly once
CERT C Secure Coding - MEM00-C - Allocate and free memory in the same module, at the same level of abstraction
CERT C Secure Coding - MEM01-C - Store a new value in pointers immediately after free()
CERT C Secure Coding - MEM31-C - Free dynamically allocated memory exactly once

Applicable Platforms C 
C++

White Box Definitions A weakness where code path has:
1. start statement that relinquishes a dynamically allocated memory resource
2. end statement that relinquishes the dynamically allocated memory resource



cve.mitre.org

Why CVE
CVE was launched in 1999 when most information 

security tools used their own databases with their own 

names for security vulnerabilities. At that time there was 

no significant variation among products and no easy way 

to determine when the different databases were referring 

to the same problem. The consequences were potential 

gaps in security coverage and no effective interoperability 

among the disparate databases and tools. In addition, each 

tool vendor used different metrics to state the number of 

vulnerabilities or exposures they detected, which meant 

there was no standardized basis for evaluation among the 

tools. 

CVE’s common, standardized identifiers provided the 

solution to these problems. CVE is now the industry 

standard for vulnerability names. CVE Identifiers provide 

reference points for data exchange so that information 

security products and services can speak with each other. 

They also provide a baseline for evaluating the coverage of 

tools and services so that users can determine which tools 

are most effective and appropriate for their organization’s 

needs. In short, products and services compatible with 

CVE provide better coverage, easier interoperability, and 

enhanced security. 

How CVE Works
The process of creating a CVE Identifier begins with the 

discovery and report of a potential security vulnerability. 

The information is then assigned a CVE Identifier by a 

CVE Numbering Authority (CNA) and posted on the CVE 

List on the CVE Web site by the CVE Editor. As part of its 

management of CVE, The MITRE Corporation functions 

as Editor and Primary CNA. The CVE Editorial Board 

oversees this process.

CVE in Use
As the industry standard, CVE Identifiers are used in 

numerous information security products and services 

from around the world. These “CVE-Compatible” prod-

ucts include vulnerability databases; security advisories 

and archives; vulnerability notification, assessment, and 

remediation products; intrusion detection, management, 

Common Vulnerabilities and Exposures — CVE®

The Standard for Information Security Vulnerability Names

CVE is a dictionary of common names for publicly 

known information security vulnerabilities. CVE’s common 

identifiers—called CVE Identifiers—make it easier to share 

data across separate network security databases and tools, 

and provide a baseline for evaluating the coverage of an 

organization’s security tools. 

CVE is:
■■ One name for one vulnerability or exposure

■■ One standardized description for each vulnerability or 
exposure

■■ A dictionary rather than a database

■■ The way for disparate data bases and tools to “speak” 
the same language

■■ The way to interoperability and better security 
coverage

■■ A basis for evaluation among tools and databases

■■ Free for public download and use

■■ Industry-endorsed via the CVE Editorial Board and 
CVE-Compatible Products

The MITRE Corporation maintains CVE and its public Web site, 

manages the compatibility program, and provides impartial 

technical guidance to the CVE Editorial Board throughout the 

process to ensure CVE serves the public interest. MITRE

202 Burlington Road, Bedford, MA 01730-1420 
www.mitre.org



MITRE Learn More – https://cve.mitre.org 

monitoring, and response products; incident management 

products; data/event correlation products; educational 

materials; firewalls; patch management products; policy 

compliance products; and security information manage-

ment tools.

The U.S. National Vulnerability Database (NVD) of CVE 

fix information (http://nvd.nist.gov)—sponsored by the 

office of Cybersecurity and Communications at the U.S. 

Department of Homeland Security and operated by the 

National Institute of Standards and Technology (NIST)—is 

based on and synchronized with the CVE List. NVD also 

includes Security Content Automation Protocol (SCAP) 

mappings for CVE-IDs. SCAP is a method for using specific 

standards to enable automated vulnerability management, 

measurement, and policy compliance evaluation (e.g., 

FISMA compliance) and CVE is one of the open commu-

nity standards SCAP uses for enumerating, evaluating, and 

measuring the impact of software problems and reporting 

results. The use of CVE by U.S. agencies was also recom-

mend by NIST in two official documents in 2002, and in 

June 2004, the U.S. Defense Information Systems Agency 

(DISA) issued a task order for information assurance ap-

plications that requires the use of products that use CVE 

Identifiers. 

CVE also helped to create new initiatives: MITRE’s 

Common Weakness Enumeration (CWE™) dictionary of 

software weaknesses is based in part on the 55,000+ CVE 

Identifiers on the CVE List, and its Open Vulnerability and 

Assessment Language (OVAL®), a community-developed 

language for determining vulnerability and configuration 

issues on computer systems using community-developed 

XML schemas and definitions, bases its OVAL Vulnerability 

Definitions primarily on CVE Identifiers.

And in 2011, the International Telecommunication 

Union’s (ITU-T) Cybersecurity Rapporteur Group, which is 

the telecom/information system standards body within the 

treaty-based 150-year-old intergovernmental organization, 

adopted CVE as a part of its “Cybersecurity Information 

Exchange Framework (X.CYBIEF)” by issuing Recommen-

dation ITU-T X.1520 Common Vulnerabilities and Exposures 

(CVE), that is based upon CVE’s current Compatibility Re-

quirements, and any future changes to the document will 

be reflected in subsequent updates to X.CVE.

CVE Community
CVE is an international information security community 

effort. In addition to the contributions of the CVE Editorial 

Board and the CVE Sponsor, numerous organizations from 

around the world have made their products CVE-Compati-

ble, have included CVE Identifiers in their security adviso-

ries, and/or have adopted or promoted the use of CVE.

CVE Editorial Board The CVE Editorial Board, which 

includes members from numerous information security-

related organizations from around world such as commer-

cial security tool vendors, members of academia, research 

institutions, government agencies, and other prominent 

security experts, oversees which vulnerabilities or expo-

sures are included in the CVE List.

CVE Sponsor CVE is sponsored by the office of Cyber-

security and Communications at the U.S. Department of 

Homeland Security.

CVE-Compatible Products and Services Numerous or-

ganizations from around the world have made their infor-

mation security products and services “CVE-Compatible” 

by incorporating CVE Identifiers. Refer to the CVE Com-

patibility section of the CVE Web site for a list of official 

CVE-Compatible Products and Services and Declarations to 

Be CVE-Compatible.

Each CVE Identifier Includes

■■ CVE Identifier number (i.e., 
“CVE-1999-0067”).

■■ Brief description of the security vulnerability 
or exposure.

■■ Any pertinent references (i.e., vulnerability 
 reports and advisories or OVAL-ID).


