

Page | 1

Security Automation Developer Days

June 14-16, 2010

Page | 2

Table of Contents

Introduction ..4

Attendee List ...5

Monday June 14th ...8

Asset Results Format and Asset management... 8

Background and Introduction ... 8

Prioritization and Timeline .. 8

Which of the specifications are most important to work on for SCAP 1.2? ... 8

Overview of Planned Specifications .. 9

Back to the discussion of what is viable for SCAP 1.2 ... 10

Asset Identification ... 10

Asset Context Model as use for Identification .. 10

Other Asset Identification Topics .. 10

Use Cases .. 11

Canonical Identifiers ... 12

Identifying Information ... 12

Asset Context Model as Identification .. 13

Overall Identification Methodology .. 13

Confidence Levels ... 14

OVAL ... 15

What Has Changed Since Last Year? ... 15

Highlights .. 15

Last Year’s Topics .. 15

Discussion Topics .. 16

Taming OVAL Results .. 16

Conclusion ... 19

Optimizing Item Searches ... 25

Proposal 2: Add a filter and action behavior .. 30

Least Version Principle for OVAL Content .. 39

Application Specific Detection .. 41

Adding Datatypes .. 43

Tuesday June 15th ... 44

Cross-SCAP Standardization .. 44

Cross Protocol Standardization and Architecture ... 44

Page | 3

Specification Standardization ... 46

Schema Standardization ... 46

Core Schema Use .. 46

Identifier Conventions .. 47

Remediation ... 47

Enterprise Remediation Automation Protocol (ERAP) ... 47

Remediation Research Project Report .. 48

Common Remediation Enumeration & Extended Remediation Information: Technical Issues 48

Wednesday June 16th .. 51

Digital Trust ... 51

Use Cases .. 51

Content Use Case .. 51

Content Quality Assurance ... 51

Compositional Content ... 51

Results ... 51

Results (expanded) .. 51

Aggregated Results ... 52

Current Notional Digital Trust Model ... 52

Example Signature .. 52

Implementation Issues .. 52

Open Questions .. 54

CPE .. 55

CPE Overview .. 55

CPE Manager Concept Development Effort.. 59

CPE Naming Specification ... 64

Name Matching Specification ... 68

Outstanding issues: ... 68

CPE Dictionary and Language Specifications .. 74

Matching Incomplete Information.. 77

Page | 4

Introduction

Security Automation Developer Days was held on June 14 - 16, 2010 at The MITRE Corporation in

Bedford, MA. This event was the most recent chapter in an ongoing series of workshops, beginning in

June of 2009 at MITRE, Bedford and February, 2010 at NIST in Gaithersburg, MD.

Eighty-six people registered for the event, and roughly 75 people were present each day of the

workshop. Over the three days, fourteen sessions were held and this document contains a

comprehensive summary of each of those sessions.

As you prepare to review these minutes, the authors would once again remind you that the standards

cannot continue to advance without ongoing discussion of the issues throughout the year. This is

accomplished through dialogue in the email discussion lists. A complete list of these email discussion

lists can be found here: http://measurablesecurity.mitre.org/participation/index.html . Please sign up

for those lists that interest you.

What follows is a detailed summary of the discussions from the event.

http://measurablesecurity.mitre.org/participation/index.html

Page | 5

Attendee List

Apple - Shawn Geddis

Arellia Corp - Kevin Stephens

Belarc - Richard Defuria

 Gary Newman

BigFix - Eric Walker

Booz Allen Hamilton - Ying Qi

Cimcor - Timothy Rodriguez

 Jeff Wozniak

Cisco Systems - Joseph Dallatore

 John Stuppi

 Seth Hanford

Dept of State - Randell Adkins

 Vu Nguyen

DISA - Andy Clifford

 Jim Govekar

 Jason Mackanick

 Joe Mazzarella

 Scott Moore

 Alan Peltzman

 Pete Schmidt

 Jordan Shuhart

 Jacquie Sipes

 Jamaal Spearman

 Ricki Vanetesse

DTCC - Aharon Chernin

EMC - Dan Reddy

Federal Reserve - Blake Thomas

 - Doug Taylor

G2, Inc - Matthew Kerr

 George Saylor

 Shane Shaffer

IBM - Scott Moore

Page | 6

McAfee - Kent Landfield

 Richard Whitehurst

MITRE - Jonathan Baker

 Sean Barnum

 Steve Boczenowski

 Andrew Buttner

 Maria Casipe

 Brant Cheikes

 Michael Chisholm

 Matthew Hansbury

 Daniel Haynes

 Jasen Jacobsen

 Mike Lah

 Daniel Mitchell

 Linda Morrison

 Lisa Nordman

 Mary Parmelee

 Emily Reid

 Charles Schmidt

 Matthew Wojcik

 Bryan Worrell

 John Wunder

 Margie Zuk

Modulo Security - Marlon Gaspar

NASA - Gary Gapinski

nCircle - Ian Turner

NIST - John Banghart

 Harold Booth

 David Waltermire

 Paul Cichonski

NSA - Mike Kinney

 Jim Ronayne

 Joseph Wolfkiel

RSA - Matthew Coles

 Dennis Moreau

SecPod Technologies - Chandrashekhar Basavanna

SRA - Wei Chen

 Deirdre Regan

Page | 7

Symantec - Jim Boyles

 Richard Freeman

 Jason Meinhart

 Craig Morea

 Dragos Prisaca

 Josh Turpin

TASC - Glenn Fournier

 Tom Mowbray

Telos - Sudhir Gandhe

Tenable - Mehul Revankar

ThreatGuard - Rob Hollis

Tripwire - John Wenning

Triumfant, Inc - Bill Goodrich

US Army - Gerald Crismon

 Vladimir Giszpenc

USAF - Kathleen Lynch

USDOT - Brendan Harris

Page | 8

Monday June 14th

Asset Results Format and Asset management

Background and Introduction

- SCAP content allows standardization of how to check for things
o But how do you handle enterprise automation?
o Results reporting, information sharing, tasking

- Need languages and interface specifications
- Building off of Assessment Results Format, Assessment Summary Results, Policy Language for

Assessment Results Reporting (ARF, ASR, PLARR)
o Straw Poll: about ½ the audience had used or heard of ARF 0.41

- New Specifications being introduced
o Asset Results Format (ARF 1.0)
o SCAP Source/Result Data Stream
o Asset Data Model
o Asset Identification
o Interface Specifications

- Governance
o Led by NIST
o Core group of NIST, MITRE, DoD
o Others can join

- In collaboration to transition ARF 0.41.2, ASR, PLARR to new NIST specifications
o Also in collaboration with OVAL, OCIL, other specifications

Prioritization and Timeline

- SCAP 1.2 Timeline
o 30 June: DRAFT specifications released
o Close of comment period end of July
o Specifications Final by August 15
o Reference implementations by end of August

Which of the specifications are most important to work on for SCAP 1.2?

- Suggestions for SCAP 1.2:
o ARF, Asset Context Model, Asset Identification, source and result data streams

- Suggestions for later work
o Tasking and results request, summary results, interfaces

- Jon Baker: It would be challenging to integrate the identification specifications into OVAL/OCIL/etc
and get those specs final by SCAP 1.2

- Unidentified speaker: What is an asset?
 Anything you run an assessment on (things you care about): people, devices, systems,

networks, organizations
- John Banghart: Have you considered information being an asset that has value? For example, a

document has value and you may want to asset it for integrity.

Page | 9

o Dave Waltermire: There's a lot of things we consider assets, including information. Our
thinking is to start small, describe a subset of the most used models, and allow for
extensibility. We have bigger problems than information.

o LtCol Wolfkiel: Maybe it would be better to list what we consider assets, and show how
they fit in that category.

o Mike Kinney: If you can't automate it, it makes it hard to talk about and may not be
valuable.

 Dave Waltermire: Important to think about this effort as more than just
assessments and automation.

o John Wunder: Let's focus on the current state of practice.
- Unidentified Speaker: Do you have an example of the asset context model?

o John Wunder: Not yet, model isn't done yet.
- Same speaker: Applications and servers are both assets yet applications reside on servers. How do

you automate remediation ownership considering this?
o Dave Waltermire: Relationships are very complicated.
o John Wunder: We'll have another meeting to talk about the asset context model

specifically, let's focus on timelines now.

Overview of Planned Specifications

- Asset Reporting Model
o Container for an asset, what was assessed against, the results, what performed the

assessment, similar to ARF 0.41.
o How do you report on SCAP results? OVAL, OCIL, XCCDF, etc

- Asset Context Model
o What does an asset look like?

 IDs, IP, MAC, etc
 LtCol Wolfkiel: This is an asset ontology

o Vladimir Giszpenc: Isn't all that in the reporting format?
 John Wunder: Maybe it can be talked about in both places. If result of an

assessment, maybe it's in ARF. If it's the result of fusion and correlation, it's
probably part of the context model.

- Asset Identification
o Do you give asset a unique ID
o Do you identify it based on other info
o And how do you do this in the context of multiple sensors, assessment styles, timelines, etc.
o Unidentified speaker: If you throw asset identification into OVAL, does that mean the other

changes would also need to be adopted for SCAP
 Jon Baker: Yes. It could also be optional inside system info
 Dave Waltermire: We're doing the same thing with OCIL.

o Dennis Morrow: Lots of work has gone into this inside CMDBs and other systems, we don't
want to be orthogonal to that. Does your specification deal with the complexity of the issues
(over time, different identifiers).

 John Wunder: Yes, we've talked a little about this, and it should be able to reuse
much pre-existing work to handle complexity.

o John Banghart: Are you taking into account virtualization?
 John Wunder: Yes, it's an important issue. How you treat VMs depends on what

you're assessing: hardware, OS, applications…
- SCAP Source and Result Data Stream

Page | 10

o Bundling of SCAP results and content
o Similar to existing SCAP Data Stream ZIP files

Back to the discussion of what is viable for SCAP 1.2

- Gary Newman: You mentioned you've been discussing this for a few weeks, is that on the list?
o John Wunder: No, this is in core working group calls. If you're interested in joining that let

us know. We'll also be starting public meetings soon.
- Gary Gapinski: Does the timeline entail validation for products that governments must buy? This is

ambitious given amount of uncertainty.
o Dave Waltermire: Yes, validation against SCAP 1.2 begins in early 2012. It is ambitious, but

it's not a brand new initiative…it's based off of ARF 0.41, ASR, and PLARR.
- Dennis Morrow: Asset identity has to be high priority, if you leverage prior art you'll be ahead of the

game.
- John Wunder: Do people agree that the last three bullets (tasking, interfaces, summary results)

should be pushed off?
o LtCol Wolfkiel: ASR is heavily used within DoD
o Gary Gapinski: It is difficult to use existing content. What might OMB be asking for this year

on to next year in terms of reporting requirements?
 John Banghart: We can't speak for OMB. Look for additional memos from them.

o John Wunder: Based on LtCol Wolfkiel's comments should we include summary results?
 Not much comment, Dennis Morrow (?) said no.

Asset Identification

- Description of use cases (see slides)
o SCAP, EMAP, ERAP, OVAL, OCIL, XCCDF, context model

Asset Context Model as use for Identification

- First question: are there important differences between talking about a full asset context model vs.
just an identifier. Are those things interchangeable in the specifications using asset identification?
Our thought is that you should focus on asset identifier.

- John Banghart: Full model exists somewhere, so it's whether or not reporting is based on identifier
vs. full model

- Jon Baker: From an OVAL perspective you need to have a choice. Tools consuming OVAL results
downstream may not know the identifiers.

- Gary Newman(??): What's a full asset model?
o Asset Context Model
o LtCol Wolfkiel: You could build an ID model that matches arbitrary assets (IP/Mac). Full

context model would include a lot more data that doesn't help uniquely identify a device.
- Aharon Chernin: Asset context data changes very rapidly. If you keep that context inside OVAL

results it won't be valid for very long.
- Vladimir Giszpenc: My computer has 2 or 3 asset tag stickers on it. Find places to put identifiers to

facilitate automating those things as well.
- Dave Waltermire: Standardize expression of existing identification information. There are other

differences between the context model and identification: lots of information that isn't interesting
from an identification perspective. OVAL results could also be considered a type of context.

Other Asset Identification Topics

- Rob Hollis: We should revisit Vald's idea of generating a GUID for a device and put it in a
standardized location for SCAP tools to find.

Page | 11

o John Wunder: Definitely valuable, more standardized and automated.
o Vladimir Giszpenc: You can make it namespace and ID.

- Gary Newman: Uncertain about whether we can meet all the use cases. We need a scope, what's
the goal?

o Dave Waltermire: We're trying to support a synthesis use case.
o Gary Newman (?): Is this a police work type job, where you just throw anything you find into

the identifiers.
o John Wunder: There are also other use cases besides synthesis, such as specifically targeting

an asset.
- Gary Newman (?): Reminds me of the submarine that also has to fly. Maybe this should be split into

two specifications.
o Dave Waltermire: That difference might be the difference between identification

information and context model (context model is detective work)
o LtCol Wolfkiel: The fact that different types of data have different probabilities of matches

doesn't mean that we need to split the specification. Why not have business rules to say
which to use?

- Gary Gapinski: There's a false dichotomy between information that definitely uniquely identifies an
asset and information that partially identifies an asset. Can't rely on information that changes.

- Mike Kinney: the full asset model could be huge and include many things you don't need.
- John Banghart: You don't necessarily need to send a fully completed asset model to send part of the

asset model
- LtCol Wolfkiel: Need to make sure we don't pass useless info
- Dave Waltermire: The payload should be separate from the set of attributes used to identify it. Set

of attributes works across a wider set of use cases.
- Kevin Stevens: If you don't know what the other tool needs to have to identify it, you need to

present several things. There needs to be a specification for asking for a given ID (ie: give me your IP
Address). In the absence of that you present all IDs.

- Gary Gapinski: Probably need some subset of information from the context model that uniquely
identifies the asset.

- Mary Parmelee: Could you modularize the asset context model? Provide a robust set of models for
identification that is used often.

- Scott Moore: This seems like a false question because when you consider all the ways of identifying
assets you might end up with asset context as your full model anyway.

- Dave Waltermire: More flexibility hinders interoperability. We're trying to strike a balance.
- John Banghart: it should be the report requester who defines what identifiers are provided.

o LtCol Wolfkiel: SCAP is very far from query interfaces.
- Gary Newman: Unique identifiers are constructed for a particular purpose. All have upsides and

downsides. Usage of identifiers really depends on the use case.
o John Wunder: You probably care about many use cases, identifiers should be used where

appropriate.

Use Cases

- Asset Results Format
o Used in source and subject identifiers

- ARF documents may be coming from many different scanners, objective of identification is to be
able to correlate those.

- Dave Waltermire: Intent is to decouple identification of asset from context model. Multiple results
from different sources can be placed in ARF using this model.

Page | 12

- Gary Gapinski: Is the subject identification valid for all results?
o John Wunder: yes, even if the results don't have that data now
o Dave Waltermire: this avoids duplication, ie between OVAL and XCCDF

- LtCol Wolfkiel: XCCDF is broken when it comes to identification: target facts do not specify enough
so vendors provide different information.

- OVAL Use case…could be used to plug into the OVAL system identification model
- Basic issue is how do you associate results or context data with the asset they were collected on.

o Given multiple sensors, collection timeframes, architectures, etc.
- Canonical identifiers identify an asset explicitly, identifying information tries to identify it based on

collected information, context model just gives an entire representation.
- Core working group's thought is to allow one or more canonical identifiers OR some set of

identifying information

Canonical Identifiers

- Tools have identifiers for assets
- But different tools have different IDs or no ID at all
- One option is to try to propagate a single unique ID across an organization
- Another option is to namespace IDs and allow tools to report using their own IDs
- Proposal: multiple namespaced identifiers per identification element

o Pass around as many IDs as are necessary or desired
o Allows federation of IDs if you want to, but doesn't require it

- Gary Newman: what is the canonical ID? Mac address, IP address
o John Wunder: it's the current ARF 0.41 model, a namespace and a non-intelligent ID
o Canonical means valid in a particular namespace

- Eric Walker: Seems like a similar problem to the problem being solved in CPE. In both cases you're
talking about gathering disparate pieces of information to come up with a conclusion (ID).

o Harold Booth: Both Dave (Waltermire) and I are involved in both efforts so will be taking
lessons learned.

- LtCol Wolfkiel: This is different than CPE in that any system, sensor, or data store could give an ID to
an asset and this isn't a problem. Have more than one identifier for an asset is not a problem, it's a
design goal. Matching may look similar to CPE.

- Gary Gapinski: For the second bullet, why not use NCName in XML?
o LtCol Wolfkiel: ARF 0.41 also uses xsd:anyURI
o Gary Gapinski: You've cut yourself off from being able to use it as an XML namespace. You

could structure a document where the namespace for an attribute was identified with the
namespace for the canonical IDs namespace. Could also be useful in RDF.

o Dave Waltermire: Using a URI reference as a form of identifier is well established.
o John Wunder: Namespace in this context doesn't mean XML namespace, it means the

namespace that the ID is valid.
o Gary Gapinski: It would be worth talking about this online, as the constructs are parallel.

- Identifier could be used in any place an identifier is acceptable.
o Examples (see slides)

Identifying Information

- How do you use collected information to identify assets?
- The "detective work" identification
- Probably won't be a perfect match, so you have confidence, normalization, and wildcarding

concerns

Page | 13

- Proposal: Allow a defined list of keys that may be used to create a match vs. allowing matching on
any attribute

o Suggestion is to support a fully specified list but allow ad-hoc matching as a value-add but
do not standardize on it.

o Support wildcards on fields as appropriate
- Gary Gapinski: A little concerned that these items have been disassociated with the namespace that

canonical IDs were found
o John Wunder: That was the intent, collected data is different than an assigned ID
o Gary Gapinski: it appears odd that the identifiers don't live in a namespace, but canonical

IDs do
o LtCol Wolfkiel: Sometimes we have a concept of a default namespace that is globally unique

(ie CVE).
- Gary Gapinski: Same reservation as before, no association with XML namespace. Need a way of

describing how items are being reported, as sensors may report information (e.g., address) in
different ways.

- Dennis Morrow: Increasingly, collected data about devices is used to identify an asset but OVAL is
not able to express this.

o John Wunder: Could express this with tagged values
o Dave Waltermire: It's really a term identifier
o LtCol Wolfkiel: We implemented that in ARF 0.41, downside you need to express your

controlled vocabulary (possible values) outside of schema and outside of the specification or
give up on controlled vocabularies.

- John Wunder: idea of paths to keys and values is different than tagged values in that paths need to
resolve to elements in the context data model, tagged values are wide open.

- Gary Gapinski: There are cases where you need to know where data was collected in order to tell
where it is valid.

- LtCol Wolfkiel: In ARF 0.41 you would always be able to relate sensor data, including identifying
information, to the sensor that collected it.

- John Wunder: Does identifying information need to be tied to the sensor that collected it?
o General agreement, particularly LtCol Wolfkiel

Asset Context Model as Identification

- Some tools might not have any idea of canonical IDs, but wants a great match, so it sends an asset
context model to match against.

o LtCol Wolfkiel: Current DoD work uses this strategy, but without sending extra contextual
information. Similar to matching on a large set of identifying information.

- Core working group's thought would be to allow this as a last resort, but disallow it in SCAP or other
specifications

Overall Identification Methodology

- Proposal: Allow identifications to consist of:
o Canonical IDs AND/OR
o Identifying Information AND/OR
o Context Model

- No notion of request in current methodology or specification.
- Gary Gapinski: No rigor to this approach, all it says is as much or as little as possible. This

approaches asset identification but is not asset identification.

Page | 14

o Dave Waltermire: You can't be comprehensive enough to "truly" identify an asset, so we
need to do this.

- Jon Baker: It might be worth giving guidance as to what information should be provided, "as much
as possible" is vague and might create large identifiers. Also, if you can't fulfill the requirements can
you still participate?

o John Wunder: You provide as much as you have out of the constrained list.

Confidence Levels

- How do we define confidence levels?
- Is it worth talking about confidence levels?
- Mike Kinney: We're talking about confidence in that specific attribute as opposed to confidence in

the tool that provided it?
o LtCol Wolfkiel: Sometimes, sensors are more confident in specific measures than others.

E.g. NMAP. You need both overall confidence for a sensor and confidence in specific data
elements.

o Jim Ronayne: Confidence in sensor is a concern of the consumer, confidence in data
element is concern of the sensor itself.

- Charles Schmidt: Do we distinguish between information we have confidence in and things that are
ephemeral?

o John Wunder: Is it the producer or the consumer's job to figure that out? If it's the
consumer then we don't need to care because it doesn't need to be in the data format.

- Ian Turner: Also need to consider when a sensor has different capabilities depending on other
factors (network locality, etc).

- Gary Gapinski: Without a unit of measure it's impossible to correlate two different measures. Also,
sensors may not know their own uncertainty. Unless you can make a "mathematics of uncertainty"
this is not valuable so we should leave it out.

- Charles Schmidt: Universal scale is percentage, since the value is either the given value or it isn't.
- John Banghart: What does it mean to have 100% certainty in hostname and 50% certainty in IP

Address?
o John Wunder: We don't want to define the math for matching these things, we just carry

the values.
- Jim Ronayne: We're relying on the sensors to provide very specific values, maybe we need a less

graded scale (sure, sort of sure, not sure vs. 0-1)
- Dennis Morrow: Confidence is a measure that's most valuable at 100% and at 0%, don't treat it as a

metric.
- Doug Taylor: We should reuse prior art from business intelligence tools, data quality measures. In

both cases eventual goal is action by an operator and to ensure reliability.
- Vladimir Giszpenc: Make it optional and move on.

o John Wunder: Even if it's optional, we need to define what it means.
o Vladimir Giszpenc: Let it be up to the tool…

- Matt Coles: Does confidence make sense with correlated or processed data?
- Charles Schmidt: How about high/medium/low rather than percentages? This doesn't imply

mathematical values.
o Mike Kinney: In order to do calculations this needs to be a number.
o John Wunder: Nothing ties high/medium/low to reality, tools can misreport.
o Charles Schmidt: Same problem with percentages, tools can misreport.
o LtCol Wolfkiel: Need to define the number of levels of confidence. Three may be too few.
o Chris Johnson: Percentages imply precision that doesn't exist.

Page | 15

o Scott Moore: You get more fidelity with percentages. You can always determine rankings in
buckets (bucket 80-100 as high).

o Gary Newman: If we come up with confidences based on how it's discovered, we should just
state how it's discovered.

 Jim Ronayne: That isn't always how we come up with confidence
- Eric Walker: Confidence is handled by each organization in policy. Getting the decimal field lets you

handle everything in policy
- Mary Parmelee and Dave Waltermire: If it's derived per organization, how do you cross those

boundaries? Maybe you need to also send how you derived the confidence value.
o Straw poll: 50/50 should be included as an optional attribute.
o Straw poll: decimal vs. category, decimal slightly ahead

- Discussion of bindings
o JSON, XML, Text string
o Shouldn't be bound to XML
o Bindings must be reversible

- How does ARF matching work now at DISA?
o Primarily based on IP and Mac
o Also, some tools can collect GUIDs (canonical IDs) from other tools

OVAL

What Has Changed Since Last Year?

The OVAL session started with a brief recap of what has changed in OVAL since last year’s event and an

overview of the outcomes of last year’s discussion items.

Highlights

The following highlights were cited:

 Version 5.6 – Released September 11, 2009

 OVAL Adoption Program launched

 Version 5.7 – Released May 11, 2010

 Version 5.8 Planned – August 18, 2010

 OVAL Repository

o 1525 new definitions

o 4510 modified definitions

o 7287 total definitions

Last Year’s Topics

Last year’s topics included the following items:

 Deprecation Policy Review

 Schematron Usage in OVAL

 Element Name Reconciliation

 xsd:choice Structure on Objects

 Supporting N-Tuples in OVAL

Page | 16

 Pattern Match on Enumerations

 Tests Reference Multiple States

 Introduce PCRE Based Pattern Matches

 Emerging Use Case: “OVAL for System Inventory?”

A brief summary of the status on each of these items was presented. Detailed minutes from the 2009

OVAL Developer Days discussion can be found on the OVAL web site at:

https://oval.mitre.org/oval/about/developer_days.html

Discussion Topics

Taming OVAL Results

This topic consisted of three closely related subtopics that together were aimed at allowing for smaller

more useful results sets. This topic was discussed in response to community feedback and feature

requests related to making OVAL Results more useful. The general feature requests have been:

 More granular evaluation results are needed to show why a definition evaluated as it did.

 Full OVAL Results do not scale well to enterprise.

 Include only the actionable information in OVAL Results.

 Highlight the hidden data in OVAL Results.

All of these requests come with the expectation that OVAL Results must maintain interoperability.

Products must continue to be able to exchange OVAL Results.

Subtopic 1: More Granular Evaluation Results

This subtopic is based on a feature request received over the oval-developer-list. The request was

summarized as “add capability to specify test result other than true or false”. The requestor would

specifically like OVAL to support the following examples:

1. Verifying installed version of an application:

o true – when application version 7 is installed in the system

o false – when the version of application is not 7

o not applicable – when the application is not installed

2. Verifying file permissions:

o true – when the file exists and its access rights are properly configured

o false – when the file exists and its access rights are not properly configured

o not applicable – when the file does not exist

In short, this can be thought of as needing to report that the system is neither compliant nor

noncompliant if the application or file does not exist.

Background

As background for this discussion the current OVAL Result values were presented and discussed. As of

version 5.7 the following result values are defined in the OVAL Results schema:

https://oval.mitre.org/oval/about/developer_days.html

Page | 17

 true – the characteristics being evaluated match the information represented in the system

characteristic file.

 false – the characteristics being evaluated do not match the information represented in the

system characteristic file.

 unknown – the characteristics being evaluated cannot be found in the system characteristic

file.

 error – the characteristics being evaluated exist in the system characteristic file but there was

an error either collecting information or in performing analysis.

 not evaluated – a choice was made not to evaluate the given definition or test.

 not applicable – the definition or test being evaluated is not valid on the given platform.

The specific meaning and utility of the ‘not applicable’ results was reviewed in some detail since it

is important to note that the ‘not applicable’ result value already has a special meaning and it would not

be appropriate to overload that meaning for another purpose. As noted in the OVAL Results schema

documentation, “… a result value of 'not applicable' means that the definition or test being

evaluated is not valid on the given platform. For example, trying to collect Linux RPM information on a

Windows system. Another example would be in trying to collect RPM information on a linux system that

does not have the RPM packaging system installed.” As it is defined, the ‘not applicable’ result

value allows content authors to combine criteria logically for multiple platforms. For example, a

vulnerability definition can be written to include a <registry_test/> and the

<rpminfo_test/> in order to check both Windows and Red Hat systems. In order to support this

capability the ‘not applicable’ result value is not considered when determining aggregate results. For

example, a ‘false’ result AND a ‘not applicable’ result will aggregate to a ‘false’ result.

Similarly, a ‘true’ result AND a ‘not applicable’ result will aggregate to a ‘true’ result.

Another issue that prevents an OVAL Results consumer from processing a results document as it is and

locating the desired information is the fact that some of the results information may be obscured once

the result of a test is determined. Each test has a check attribute and a check_existence

attribute. The check_existence attribute allows a content author to make an assertion about the

number of Items that must exist on a system. The check attribute allow a content author to make an

assertion about the number of Items on the system that must satisfy the referenced State conditions.

When determining the result of a Test if the check_existence is satisfied (true) then the check is

considered. Otherwise the Test result is the result of the check_existence. This evaluation process

means that there is no way to differentiate a ‘false’ result due to failing the check_existence from

a ‘false’ result due to failing the check.

Proposal 1: Add a Result Value

In this proposal the suggestion was made to add a new result value like: false_existence. This

value could be used to record the fact that the check_existence evaluation failed. Under this

proposal the not applicable result value could continue to be used as it is.

The initial examples could be reworked as follows with the proposed false_existence result value:

Page | 18

1. Verifying installed version of an application:

o true – when application version 7 is installed in the system

o false – when the version of application is not 7

o false_existence – when the application is not installed

2. Verifying file permissions:

o true – when the file exists and its access rights are properly configured

o false – when the file exists and its access rights are not properly configured

o false_existence – when the file does not exist

These specific simple examples would work with this new result value.

In considering this proposal it is important to note that as defined in OVAL version 5.7 a test essentially

evaluates to a Boolean with a few other possible error like results. Adding in this new result value would

be a move away from this Boolean result. Accordingly all the evaluation tables that specify how to

combine each of the possible result values would need to be recreated. These evaluation tables must

specify how to combine a ‘false‘ and a ‘false_existence‘ result and this decision will almost

certainly not meet everyone’s needs all the time.

Finally, it was noted that moving away from the Boolean result and adding a new result value might

eventually lead us to an unwieldy proliferation of result values.

Proposal 2: Add an Attribute

In this proposal the suggestion was made to add a new attribute to the oval-res:TestType to

record the result of evaluating the check_existence attribute. This new attribute would not be

considered during Definition evaluation and would simply provide high level metadata to record one

step in the evaluation process for a Test.

The initial examples could be reworked as follows with the proposed existence_result attribute:

1. Verifying installed version of an application:

o true – when application version 7 is installed in the system

o false – when the version of application is not 7

o existence_result=’false’ – when the application is not installed

2. Verifying file permissions:

o true – when the file exists and its access rights are properly configured

o false – when the file exists and its access rights are not properly configured

o existence_result=’false’ – when the file does not exist

In considering this proposal it is important to note that the evaluation process is not modified in any way

by this new attribute. The attribute is simply metadata about that evaluation process. As such there is

no need to alter any of the existing evaluation tables. This proposal also preserves the Boolean result

values for a Test and Definition. However, this proposal requires extra work on the part of the OVAL

Results consumer to process the content and determine if a given result was false due to an existence

failure or a state failure.

Page | 19

Discussion

One participant pointed out that it is desirable for the tool or the higher level context to make the

decision to evaluate a given OVAL Definition on a given system or not. This is commonly done in XCCDF

with a platform check in a Rule or possibly even at the Group or Benchmark level.

In considering proposal 1 the following comments were made:

 How would this proposal handle sets of items and reporting partial existence of the needed

items? The suggestion was made that another result value would be needed for this situation to

record partial failure of the existence check.

 It is a slippery slope with a ternary state. This could lead to a large set of possible conditions.

 Perhaps we go the other way and not allow tools to ask this sort of two part question and

instead simply create two different definitions: one definition to test for applicability and

another to test for the configuration setting.

 Keeping the checks (OVAL Definitions) as granular as possible allows for flexibility and ensures

that this problem can be supported in OVAL as long as there is a higher level context in which a

determination about which checks to run can be made.

The discussion comments led to the group questioning whether this particular issue is really something

that OVAL needs to solve. One could argue that OVAL has all the needed capability today and that there

is not a strong need to push this capability down into OVAL.

An additional suggestion was made to consider adding a new Test or set of Tests like the

<unknown_test/> that would evaluate to a specified result value whenever considered.

In considering proposal 2 the following comments were made:

 When a test fails the existence_check, the Items that are collected as a result of processing

the Test’s referenced Object are not evaluated. These items are all referenced in the oval-

res:TestType with the <tested_item/> element. This element holds the id of an Item in

the collected System Characteristics and the result of evaluating that Item. When the

existence_check fails, the result record for each <tested_item/> is ‘not

evaluated’. This information should be enough to convey that the existence_check

failed. Essentially, OVAL already has information that would allow a tool to determine that a

false result was due to a false existence_check.

 The proposed existence_result attribute could be thought of as adding in yet another

type of result response and therefore is changing a long standing premise of OVAL that each

Definition evaluates to a single result value.

 Adding some sort of third result will simply add confusion to result consumers.

Conclusion

Throughout the discussion there was a recurring theme of whether or not OVAL should address this

feature request at all. In the end there was little to no support for making any change to OVAL to

Page | 20

support this feature request. In response to this discussion the topic will be revisited on the oval-

developer-list with the suggestion of closing out this feature request.

Subtopic 2: Lightweight OVAL Results

This subtopic is based on an open feature request to “add result directive to allow for lighter weight

results with ability to track causal information”. In this case the requested feature is actually a bit

overloaded. There are really two distinct items to be discussed. First, adding additional directives to

allow for more control of the content of an OVAL Result document. Second, highlight the causal

information that is needed by result consumers to make easy use of an OVAL Results document. In this

discussion the group focused on the first item. The second item was discussed in the “What is the

cause?” subtopic.

Background

As background for this discussion the current OVAL Result directives were presented and discussed.

OVAL Result directives can be thought of as a set of flags that describe the information included in an

OVAL Results document.

As of version 5.7 the OVAL Result directives can be used to specify the level of detail included in an OVAL

Results document as follows:

 Results may be included by result value. For example, an OVAL Results producer can exclude all

OVAL Definitions with a result of ‘not evaluated’ or only include results for OVAL Definitions that

had a result of ‘true’.

 Either full system data and evaluation results or simply an OVAL Definition id and a result value

many be included for each OVAL Result value.

OVAL Result directives are set by the result producer and included in the OVAL Result document. There

is an assumption that the result producer is somehow configurable and capable of producing OVAL

Result documents at varying levels of verbosity.

As OVAL Results are currently defined, there is a moderate level of flexibility in the allowed result

outputs that can easily reduce the size of a result document by 20% or more in realistic usage scenarios.

Discussion

The discussion of this subtopic focused on exploring and better understanding the shortcomings of the

version 5.7 OVAL Results directives. This discussion started by considering the following questions:

 Does anyone really support the directives?

o SCAP 1.0 explicitly requires full OVAL Results.

o Directives are not currently implemented in OVALDI.

 Do we need more options than thin and full?

o Does the definition document need to be included?

 If not, then how does a result consumer really know what was evaluated?

 Do we need to consider definition @class?

Page | 21

o For example, include full results for true vulnerability definitions and thin results for all

other true definitions.

 How do more options affect interoperability?

o Are full results needed for generic content sharing?

During the discussion the following comments were made:

 Within a product I know what OVAL Definition document was used during evaluation. It would

be nice not to require the source OVAL Definition document in the OVAL Results so that my

clients could return OVAL Results without the source OVAL Definition document. From my

server, I could then produce full OVAL Results including the source OVAL Definitions if needed.

 When the OVAL Results schema was created there was no concept of a results data stream.

There did not used to be a benchmark with an id that served as a wrapper around a set of OVAL

Results. At this point we may not need the full source OVAL Definition document.

 If I know an OVAL Definition id and I simply want the results back, I do not want the full

definition I just requested back.

 We need to look at all the baggage that is included within the SCAP component standards. If

there is simply too much baggage, then we will need to move on to other solutions.

 In XCCDF the original document is optional. A benchmark can be evaluated and then just the

results can be provided without the full source XCCDF document.

 Adding more result options to OVAL simply adds complexity. We are currently guessing about

future use cases of OVAL Results that we don’t understand and trying to define formats that will

meet those needs. Much of what is being discussed can be achieved through a simple transform

of an OVAL Results document. Are we adding complexity to OVAL that is simply not needed?

 Should OVAL focus on the simpler end system assessment use case and allow others to develop

solutions on top of OVAL that address exchanging result information on an enterprise scale?

 In SCAP 1.1 several different OVAL Result combinations will be included to allow for more

compact OVAL Results. In SCAP 1.2 there is additional opportunity for improvement. NIST is

looking into a more formal request/response format for SCAP 1.2 and additional OVAL Result

granularity could be used.

 One vendor indicated that they simply make use of a transformation of a full OVAL Result

document to create what they call a findings result.

 Requiring each vendor to write their own transformation will defeat tool interoperability so we

really should look into how we can define a useful format in OVAL for conveying OVAL

assessment results.

 When a definition is created, the author does not always know what is important to report.

 Could a simple hash or checksum of the source OVAL Definitions document be included rather

than denormalizing all the result data by including a copy of the source document?

 Even when a compliance definition results in true people sometimes want to know the full

details and what the relevant observed system value is.

 For result content should we extend beyond full and thin? Let’s consider allowing for variations

in between the two. For example, allow thin plus full definition criteria. On top of that allow full

Page | 22

test results. Then on top of that allow full item data. In general, more result granularity will

allow for tailoring by the evaluation requestor. In order to increase granularity we need to

expose a schema for declaring what the results should look like. Consider adding an OVAL

Results Directives schema for this purpose. Note that other standards could reuse that schema

to indicate that a given set of OVAL Definitions should be evaluated and that a given OVAL

Results format must be provided.

Conclusion

During the course of the discussion the following items were noted:

 OVAL Results Directives should allow for differentiation of OVAL Results content by class.

 OVAL Results should consider allowing the source OVAL Definition document to be optional.

There might be a in between option here that would include simply the ids of the Definitions

that were evaluated.

 OVAL should consider creating a lightweight schema for specifying the directives that must be

used in reporting OVAL Results.

Throughout the discussion the point was made that much of what was being discussed in terms of

controlling the content of a given OVAL Results document could be achieved by applying a XSL

transform. The downside here is simply that the output of the transform needs to be standardized.

There needs to be a standard result format of varying levels of verbosity that can represent an OVAL

Definition evaluation. These topics will be further discussed on the oval-developer-list.

Subtopic 3: What is the cause?

This subtopic is based on an open feature request to “add result directive to allow for lighter weight

results with ability to track causal information”. In this case the requested feature is actually a bit

overloaded. There are really two distinct items to be discussed. First, adding additional directives to

allow for more control of the content of an OVAL Result document. Second, highlight the causal

information that is needed by result consumers to more easily make use of an OVAL Results document.

In this discussion the group focused on the second item.

Background

Full OVAL Results likely contain the data needed to determine the observed settings on a system that

led to a compliance failure or vulnerability report. The following simple example was discussed:

Page | 23

In the example above, the interesting data is that the Test referenced by the minimum password length

criterion evaluated to false. This seems fairly straight forward here, but as the criteria of a Definition get

more complex it becomes increasingly difficult to identify the important pieces of data in an OVAL

Results document.

As further background it was pointed out that generally a Definition author knows what information is

of the most interest when creating a new Definition. Most OVAL Definitions include a fair amount of

preconditions and other boiler plate checks that are generally not that interesting to report to an end

user. With this in mind, it was noted that the most interesting data is generally examined with a State

entity. Within a single OVAL Definition there can be many States and each State can have many entities.

A State is used to make an assertion about an Item. Items have entities that are evaluated by State

entities. Item entities may have a multiplicity of 0 – N.

Proposal: Add a report_value Attribute

If the assumption can be made that a definition author knows which items are most interesting to

report then why not allow the author to highlight or flag those items?

This proposal suggests adding an optional report_value attribute to all State entities. This Boolean

attribute would default to false and when true would indicate that the system value(s) should be

highlighted or reported in the OVAL Results document. The current behavior would remain unchanged

when the report_value attribute is false.

The second component to this proposals is the addition of an <oval-res:observed_value/> element in

the existing <oval-res:tested_item/> element. A <oval-res:tested_item/> could have an unbounded set

of child <oval-res:observed_value/> elements. Each <oval-res:observed_value/> would hold the name of

the reported State entity, the data type observed on the system, and the observed value.

In considering this proposal it is important to note that this is not a complete solution. This solution

would work quite well in simple cases, but more complex definition criteria would remain difficult to

process and accurately report the underlying cause of a given Definition result. If accepted this proposal

would also result in even larger full OVAL Result documents as it would essentially duplicate some of the

data that is somewhat buried in an OVAL Results document.

Discussion

The discussion on this subtopic first focused on understanding how vendors are solving this problem

today. There are products that display the desired information already. How are vendors doing this and

can we develop a common solution? In response to these questions the following comments were

made:

 One individual pointed out that their organization decided to create its own results format to

solve this problem. This decision was motivated by the size of the typical OVAL Results file, the

fact that they did not want to have to include the source OVAL Definitions that were evaluated,

and the fact that they wanted an easier way to look up and report observed values. It was noted

Page | 24

that the current structure of OVAL System Characteristics makes it fairly challenging to look up

system objects such as file or registry keys, especially when variables are used.

In discussing the “Add a report_value Attribute” proposal the following comments were made:

 We might want to consider essentially reporting all values and then allow a content author to

deemphasize a given value. This would essentially be the opposite of the proposal. Rather than

highlight data, allow an author to specifically indicate that a given value should not be reported.

 There are cases in which for a reporting purpose we might only care about a given value if some

other Test is true. These dependencies will remain challenging with this proposal.

 Should there be a criteria or criterion attribute to allow for highlighting and reporting at that

level? Would this help in complex cases?

 When performing an existence check a State is not used. How would we handle this if we are

not using a State? Is this creating an inconsistency in where result data is held in an OVAL Result

document?

Response: When performing an existence check, collected Items are recorded with <oval-

res:tested_item/> element in the <oval-res:test/>, and each <oval-

res:tested_item/> element has its result set to ‘not evaluated’.

 Adding this new structure seems counter to the other OVAL Results discussion topics where we

were considering reducing the size of an OVAL Results document.

 Hypothetically, a directive could be added to control whether or not this proposed result

information is included in an OVAL Results documents or not.

 When preparing for an assessment it will become increasingly import to understand the possible

directives and their meaning.

 End users are not generating content. Typically they get the content from some authority. How

with this allow an end user to more easily see the reported data?

Response: The content authorities will need to annotate their content to allow end users to

benefit from this capability.

 It is often the case that the full Item data is interesting, not simply the value. For example, in the

case of a Windows registry key I want to know the full hive, key, name, and value combination.

 Additionally, highlighting the observed value on a system and reporting that to an end user may

not be very useful because the value might not be intended for human consumption. For

example, a value might be a bit mask where each bit might have a significant meaning and the

end user cannot be expected to interpret those bits. The end user needs the more human

readable value that is often displayed in tool UIs.

 When States are reused adding a report_value attribute will mean that a value is reported

all the time, even when it may not be appropriate.

 Another option would be to add an id to the items that should be reported. At the Definition

level the id could be referenced in a way that would indicate that the item should be reported.

This might allow a bit more granularity in determining what to reporting.

Page | 25

 Would it be simpler to just provide a lightweight framework and then let content authors

include their own style sheet of other set of rules for what to report?

Finally, the proposed OVAL Reporting schema was reviewed to highlight how the proposals in this

session differ from this new schema. More information about the OVAL Report schema can be found in

the oval-developer-list archives here:

http://making-security-measurable.1364806.n2.nabble.com/OVAL-Reports-Schema-

tp4904766p4904766.html

In summary, the OVAL Reporting schema reuses existing OVAL Objects, States, and Variables to specify a

set of information to collect from an end system. The formatting of this information is left entirely up to

the author. The report author supplies a XSL template that allows for output as desired. It is important

to note the OVAL Reporting is not about making an assertion about a machine state, it only defines a

framework for collecting information and then formatting it.

Conclusion

This subtopic needs additional discussion over the oval-developer-list. There are a number of issues that

need to be considered.

Optimizing Item Searches

In the OVAL Language, an object is used to specify which items on the system to collect. The collected

set of items is determined by specifying operations and values for the entities that describe the item in

the object. Depending on the object, and the state of the system, it is possible that a very large set of

items will be collected. As a result, tools have to process this data and write it to OVAL System

Characteristics and OVAL Results documents which takes both time and system resources. It is often the

case that many of the collected items are irrelevant to the assertion being made and the ability to

specify more specific sets of items will greatly improve the performance of tools.

This discussion focused on determining whether this is a problem that needs to be addressed, and if so,

how and when should it be addressed. The discussion began with an overview of the problem and its

influence on tools and the artifacts that they produce. This was followed by a review of the current

capabilities in the OVAL Language for item optimization, proposals for adding optimization techniques in

Version 5.8, as well as considerations regarding item optimization in Version 6.0. Lastly, the discussion

ended with an opportunity to discuss any outstanding topics and summarize the thoughts of the

community.

Background

The original discussion that initiated this topic is on the oval-developer-list and can be found at the

following link.

http://making-security-measurable.1364806.n2.nabble.com/oval-object-criteria-tp4931198.html

http://making-security-measurable.1364806.n2.nabble.com/OVAL-Reports-Schema-tp4904766p4904766.html
http://making-security-measurable.1364806.n2.nabble.com/OVAL-Reports-Schema-tp4904766p4904766.html
http://making-security-measurable.1364806.n2.nabble.com/oval-object-criteria-tp4931198.html

Page | 26

The primary example that exemplifies this problem is the need to find all world-writable files on a

system. In the OVAL Language, this is be accomplished by first creating a <file_test/> that will

collect every file on the system.

<file_object id="oval:sample:obj:1">

 <path operation="pattern match">.*</path>

 <filename operation="pattern match">.*</filename>

</file_object>

Next, a <file_test/> that represents a world-writable file will need to be specified.

<file_state id="oval:sample:ste:1">

 <owrite datatype="boolean">1</owrite>

</file_state>

Lastly, a <file_test/> will need to be specified to compare each collected <file_item/> against

the <file_state/>. Then based on the check and check_existence attributes, an assertion

will be made about the state of the system.

<file_test id="oval:sample:tst:1">

 <object object_ref="oval:sample:obj:1"/>

 <state state_ref="oval:sample:ste:1"/>

</file_test>

The problem that arises out of this example is that the <file_object/> will collect a

<file_item/> for every file on the system. Unfortunately, many of the items collected are irrelevant

to the assertion of whether or not world-writable files exist on the system. For example, on the sample

system, only 1,254 of the 148,745 files are world writable. The collection of irrelevant items also

promotes unnecessarily large OVAL System Characteristics and OVAL Results files that are not only

difficult to read, but require extra resources to process. For example, the sample system produced a

160MB OVAL System Characteristics file for every <file_item/> as opposed to a 1.24MB OVAL

System Characteristics file for every world-writable <file_item/>. As a result, solutions to this

problem will target the reduction of items collected.

Current Optimization Capabilities

In the OVAL Language, for each collected object in an OVAL System Characteristics file a flag attribute

provides information regarding the outcome of a collected object. For example, if every item that

matches the object is collected and written to the OVAL System characteristics file, the collected object

will have a flag attribute of true. Or, if an attempt to collect an <rpminfo_object/> on a

Windows system, the collected object will have a flag attribute of not applicable because a

Windows system does not use RPMs. The OVAL Language currently supports item optimization

capabilities with the flag attribute value of incomplete. The OVAL Language defines the flag

attribute value of incomplete as follows.

Page | 27

A flag of 'incomplete' indicates that a matching item exists on the system, but only some of the matching

items have been identified and are represented in the system characteristics file. It is unknown if

additional matching items also exist…

The flag attribute value of incomplete allows for optimization because tools can write a subset of

the collected items, which match the object, to the OVAL System Characteristics file. To highlight how

the flag attribute value of incomplete can be used to optimize item searches an example is

provided below.

<file_test id="oval:sample:tst:1" check_existence="none_exist">

 <object object_ref="oval:sample:obj:1"/>

</file_test>

<file_object id="oval:sample:obj:1">

 <oval-def:set>

 <oval-def:object_reference>oval:sample:obj:2</oval-

def:object_reference>

 <oval-def:filter action="include">oval:sample:ste:1</oval-

def:filter>

 </oval-def:set>

</file_object>

<file_object id="oval:sample:obj:2">

 <path operation="pattern match">.*</path>

 <filename operation="pattern match">.*</filename>

</file_object>

<file_state id="oval:sample:ste:1">

 <owrite datatype="boolean">1</owrite>

</file_state>

This example will evaluate to true if there are no files on the system that are world writable. The

<file_object id="oval:sample:obj:1"/> has a <set/> that references

<file_object id="oval:sample:obj:2"/> which will collect every file on the system. The

set also contains a <filter/> that will include any <file_item/> that matches <file_state

id="oval:sample:ste:1"/> which characterizes world-writable files. Lastly, the <file_test

id="oval:sample:tst:1" check_existence="none_exist"/> references

<file_object id="oval:sample:obj:1"/>, and with the specification of the

check_existence attribute value none_exist, the test will evaluate to true if a matching

<file_item/> is not found on the system.

This example can be optimized by only collecting a <file_item/> if it satisfies the <filter/>

specified in the <set/>. Essentially, this means that only the world-writable files will be collected

rather than every file that exists on the system. The second way that this example could be optimized is

based off the check_existence attribute. In this example, the <file_test/> will evaluate to

true if no world-writable files exist on the system. If at least one <file_item/> exists on the

system, the test will evaluate to false. As a result, this can be optimized by short-circuiting the

Page | 28

collection process when the first world-writable <file_item/> is discovered. This is possible because

the result of the assertion can be determined with a single <file_item/>. Both of these

optimizations are valid as long as the collected objects are given a flag attribute value of

incomplete.

However, it is important to note that with a flag attribute value of incomplete, on a collected

object, a result of true or false cannot always be determined. According to the OVAL Language,

with a flag attribute value of incomplete, it is unknown if additional matching items exist on the

system and, as a result, the test must evaluate to unknown. This means that certain assertions such as

check="all" are not possible because it cannot be said that all items match a specific state if it is

unknown if additional items also exist.

During the discussion of the optimization capabilities using the flag attribute value of incomplete,

the following questions and comments were made:

 Of what entity is the flag an attribute?

Response: The flag is an attribute of collected objects in the OVAL System Characteristics

document meaning it could be any object.

 What does one do when an object is used in more than one test with different determination
characteristics?
Response: You need to be aware of where this optimization is applied. In certain situations, this

optimization could evaluate to a result of unknown.

Response: In the case where the existence check is no matching files exist on the system, and

your object is collecting every file on the system, you could optimize by stopping the data

collection process once an item has been found and then setting the object’s flag attribute, in

the system characteristics file, to incomplete. If you try and reuse the object for an existence

check, other than one where no matching items exist on the system, it would evaluate to a

result of unknown.

 Has anyone attempted to apply this optimization in their tool?
Response: One vendor indicated that they applied the optimization for one test and that the

documentation provided the necessary information required to do so.

Response: It makes more sense to apply this optimization technique in situations where the

search space is large.

 A concern was raised that this optimization technique may not be as helpful in situations where
the item collection is not performed at runtime such as when items are retrieved from a
periodically updated database.

Optimization Capabilities for Version 5.8

With the release of Version 5.8 of the OVAL Language approaching, it is important to consider what

optimization capabilities can be included if desired.

Page | 29

Proposal 1: Add a filter element to objects

The first proposal for optimizing item searches in Version 5.8 is to allow for 0-n <filter/> elements

to all objects in the OVAL Language. Each <filter/> element will allow for the specification of an

action attribute which specifies whether to include or exclude items that match the state specified in

the <filter/> element. It is also important to note that with this change a complete object will be

the set of items after each <filter/> has been applied to the items collected by the object’s required

entities. An example of this proposal can be seen below.

<file_object id="oval:sample:obj:1">

 <path operation="pattern match">.*</path>

 <filename operation="pattern match">.*</filename>

 <filter action="include">oval:sample:ste:1</filter>

</file_object>

<file_state id="oval:sample:ste:1">

 <owrite datatype="boolean">1</owrite>

</file_state>

The primary advantage to this solution is that the filtering capability is a well-known concept that was

introduced to the <set/> construct in Version 5.0 of the OVAL Language. The implementation of this

solution may also be very similar to applying <filter/> elements in a <set/> and could potentially

allow for code reuse and abstraction. Since the solution would be applied across all objects, it would

solve the problem of not being able to fine-tune item collection everywhere. In addition, the ability to

specify an unbounded number of filters will provide a content author with more flexibility in

determining which items should be collected as they can include or exclude as many states as needed.

Lastly, the use of states provides a mechanism to specify multiple values using variables as well as

specify ranges using different operations.

The most notable drawback to this solution is that the filtering of items does not make sense for every

object in the OVAL Language. For example, objects that collect a single item (e.g.

<passwordpolicy_object/>) and objects that collect small sets of items (e.g.

<interface_object/>). In both of these examples, the ability to optimize item searches will not

result in a significant reduction of the output file size or the resources required by tools to process the

data. However, this drawback is mitigated because it is not required for a content author to include

<filter/> elements in the object. Another disadvantage to this solution is that, while the

<filter/> element allows additional flexibility, it also increases the risk of a content author

specifying <filter/> elements that could cancel each other or even result in an object that does not

collect any items (i.e. a flag attribute value of does not exist). Lastly, the introduction of an

additional element to objects increases the complexity for content authors in that they need to

determine when it is, and is not, appropriate to use this new capability as well as the risk, described

above, that is associated with it.

During the discussion of the Version 5.8 proposal to add a filter element to all objects in the OVAL

Language, the following question was raised:

Page | 30

 Can’t you already do that with sets today?

Response: The difference here is that when you use an object in a <set/> and apply a

<filter/> to it, the object is still going to go and collect all of those items and they will be

written to the OVAL System Characteristics file. This would allow you to remove them before

they are written to the OVAL System Characteristics file.

Proposal 2: Add a filter and action behavior

Another option for optimizing item searches is to add filter and action attribute behaviors to the

<behaviors/> element. Like the <filter/> element, the <behaviors/> element was

introduced in Version 5.0 of the OVAL Language and is a well-known concept. This also aligns with the

notion that the <behaviors/> element is a mechanism to provide a more granular definition of an

object. The filter attribute will allow also for the specification of a state that will represent the items

to include or exclude, as specified by the action attribute, from the set of items specified by the

object. Again, this change means a complete object will be the set of items after the <behaviors/>

element has been applied to the items collected by the object’s required entities. An example of this

proposal can be seen below.

<file_object id="oval:sample:obj:1">

 <behaviors filter="oval:sample:ste:1" action="include"/>

 <path operation="pattern match">.*</path>

 <filename operation="pattern match">.*</filename>

</file_object>

<file_state id="oval:sample:ste:1">

 <owrite datatype="boolean">1</owrite>

</file_state>

The key advantage to this solution is that specific objects, those that collect large sets of items, can be

targeted as opposed to applying a solution to every object even when it may not make sense. Also, since

this is conceptually similar to applying the <filter/> element in the <set/> construct, it may

present the possibility for code re-use and abstraction.

While this solution still uses states to specify the items to filter, it only allows for the use of one state

which means there is less flexibility to fine-tune the collected set of items. At the same time, this may be

beneficial as it will reduce that likelihood that content authors will create content that results in a

collected object having a flag attribute value of does not exist.

During the discussion of the Version 5.8 proposal to add a filter and action attribute behavior to the

behaviors element, the following question and comment were made:

 It appears to me that Option 2 is not as useful as Option 1 because it is restricted to only those
objects that one thought were worthy of having a filter. Behaviors have always been an odd
construct within the language and a straight forward filter that could be applied to some or even
all objects would be more useful than behaviors that were only found in certain objects.

Page | 31

Response: An object may have a limited data set in most cases, but in some cases it may have a

large data set. Thus, it makes sense to apply the filtering capability to every object such that it is

available if needed.

 What Boolean logic is available for combining filters (AND, OR, NOT, etc.)?
Response: If you have multiple filters, each filter will be applied sequentially to the set of

collected items.

Response: Is there set theory available to apply the union, intersection, etc. operations?

Response: When you use sets in the OVAL Language, it applies all of the filters prior to the set

operations (union, intersection, etc.).

Proposal 3: Add entity behaviors

A third proposal for optimizing item searches is to add entity behaviors to the <behaviors/> element

that represent the state entities for the respective object. An example of this proposal can be seen

below.

<file_object id="oval:sample:obj:1">

 <behaviors oread="1" owrite="1" oexec="1"…/>

 <path operation="pattern match">.*</path>

 <filename operation="pattern match">.*</filename>

</file_object>

The key advantage of this proposal is that the <behaviors/> element is well-known and conceptually

the addition search controls, as behaviors, aligns with the notion of specifying a more granular definition

of an object. In addition, this proposal will only target the objects where there is a need to actually

optimize item searches (i.e. those objects that have the potential to collect large sets of items).

Out of the proposals, this is by far the most restrictive proposal in that it does not use states to specify

the resulting set of collected items. As a result, the functionality of specifying ranges and multiple values

will not be possible. It will only be possible to say that an item matches if its values align with those

specified in the <behaviors/> element. In addition, since each set of behaviors will be different, the

implementation will not lend itself to a clean and general solution. Lastly, this proposal will scale poorly.

When specifying behaviors for an object, a decision will need to be made as to which state entities

should be added. If every entity is added, the list of behaviors can become extremely large. For example,

the <file_state/> has twenty-three entities!

During the discussion of the Version 5.8 proposal to add entity behaviors to the behaviors element, the

following comment was made:

 The benefit of an approach like this or Option 2 is that you can say the things that people care
about are a particular attribute, flag, etc. It is a broadening of the behavior notion whereas
Option 1 is really taking states and generically applying a filter notion across everything. This
approach would allow you to leverage your investment in state analysis in your interpreter

Page | 32

engine. If you don’t have the investment or your design is different, this option, will allow you to
say files are a problem so we are going to provide a targeted fix for files.

Why Can’t We Just Add Additional Entities to Objects?

As outlined in the oval-developer-list discussion, there is a desire to add additional entities to objects

that will allow for a more granular definition of the set of items to collect. An example of this is provided

below.

<file_object id="oval:sample:obj:1" >

 <path operation="pattern match">.*</path>

 <filename operation="pattern match">.*</filename>

 <owrite datatype="boolean">1</owrite>

</file_object>

The addition of entities to objects can be accomplished in two ways. The first way is to make the

additional entities “required” which means they must be specified in the object. Unfortunately, this is

not possible as it would invalidate existing content. However, this could be avoided by deprecating

existing tests, objects, and states and re-creating new ones that include the additional entities.

Unfortunately, this will result in the component schemas doubling in size. Lastly, this option introduces

the problem of how to deal with entities where the value does not matter. For example, to specify that

the value of the <owrite/> does not matter, it would require that the <owrite/> entity reference

a <constant_variable/> that contains the values “0” and “1”. This is not desirable. All of these

issues can be resolved by introducing the new entities as “optional” meaning that the additional entities

are not required to be specified in the object.

While the addition of entities, in objects, is technically possible in Version 5.8, it would represent a

significant change in the OVAL Language. First, it will change the traditional notion of what an object is.

An object is the minimum set of required entities necessary to identify a set of items on the system. The

first option will break the notion of an object being the minimal set of entities required to identify an

item and the second option will break that same notion as well as the notion that the entities in objects

are to be required. Both options will also require significant changes to the schema and that tools

support the additional functionality. The community was then asked to consider if this is something that

should be done in a minor release?

During the discussion of the issue of why we can’t just add entities to objects, the following comments

were made:

 Could you just make the object entities nillable? That is the standard procedure for fields that
we don’t care about?
Response: It is really a different concept. Nillable object entities are reserved for entities that

form a hierarchical structure and it is necessary to ignore the lower level entities in favor of only

collecting those that are higher up. For example, with the <registry_object/>, the name

entity could be set to nil resulting in the collection of only the hive and key. You could come up

with a definition for do not collect <owrite/>.

Page | 33

 Why are you suggesting that we make the object entities required?
Response: We are just considering the different options.

 If you are identifying a set, you are still identifying the minimum set of attributes required to
define the set.
Response: By specifying the additional entities you are specifying a set.

Response: Think of the path and filename as a composite ID for a single file on a system. Across

all objects, we have been consistent in specifying how you identify a file, registry key, or RPM.

Response: You can already use patterns in file to get a set. As soon you start dealing with sets,

you need a filtering capability to identify the set accurately.

 How would we handle more complex logical filtering like world read and world write or user
read and user write?
Response: You would want a container to support that Boolean logic.

Response: A state does that. If you look at the <filter/> option, a state has the child entities

world read and world write or user read and user write. You would need one filter for world

read and world write and another for user read and user write.

Response: What if you wanted an OR relationship (one or the other, but not necessarily both)?

Response: You would need an additional construct to specify the Boolean relationship between

the filters.

Response: You could still do that with sets.

 A question about Option 1, it does not seem like you need the path and filename in the object?
A state contains that information. You could either declare a filepath, a path and filename, or a

<filter/>. It is really a choice of those three.
Response: It would be a big change in how some tools process content if an empty file object

indicated that all files on the system should be collected.

 Response: It is a choice of one of those three. Either it is required to have a path and filename,

a filepath, or a <filter/>. Any one of those three options would be sufficient and would not

invalidate the current process.

Response: That would be a very different way of using states.

Response: I do not see why you need to restrict it that way. If you want to look for world

readable files in a certain directory you need to specify the path.

Response: You are not losing that capability, by not specifying the path, as it is available in the

state.

 I think Option 1 is the most desirable of the three options. First, it is conceptually the closest to
how people think about calling the potential target objects out by a <filter/> mechanism.

Page | 34

Second, it is directly symmetrical with what one can say about an object. All of the entities
found, within a state, can be used to direct the object collection phase. Lastly, in the absence of
a way to exercise of Boolean logic, you are restricted to a logical AND or a logical OR. One could
choose both, but I strongly suggest that we surround it with something that allows the

<filter/> elements to be combined together in a deliberate fashion as opposed to a single
fashion.

 A benefit of Option 1 is that it is going to promote re-use. Rather than building multiple file
objects, you could build a single <file_object/> and potentially filter it in different ways.
Response: It does not require a pragma that says the optimization, which is not explicitly

specified in the OVAL Language, might take place regardless. It is a way to build the capability

into the OVAL Language as part of the Item collection process.

Response: You would be able to fine-tune exactly what you are looking for.

 Would it be a big leap to have tool vendors support additional object entities?
Response: One vendor reported that supporting additional object entities would not be difficult.

 I raised a question on the oval-developer-list regarding the fear of versioning. If a major version
is required, what exactly is the problem with versioning?
Response: I would say the biggest challenge right now is the maintenance tail we have. We have

to maintain the Version 5 release which is driven by the fact that many of you in the room have

products and tools that support Version 5 and are depending on it working as well as having

incremental advances such that your tool can continue to process the latest Microsoft security

advisories. I think it comes down to finding a way to get the Version 5 line relatively stable so

that we are only doing minor tweaks. At which point, we can focus primarily on Version 6. It also

means that we will stop working on Version 5.x which is hard to do.

Response: I do not really understand the logic behind that. It seems that we have disbanded the

notion of breaking changes, but breaking changes were the thing that would have precipitated a

numeric major release. Outside of that, I am not sure that would. Do any vendors have thoughts

on this?

Response: Is your point that most of the changes that we have been talking about can be done

in such a way that it wouldn’t break?

Response: Yes.

Response: My counter argument is that it seems that most vendors care about the SCAP version

and those are specified in 5.3, 5.4, 5.6, and 5.8. If instead of 5.8, it happened to be 6.0, it would

not make that much of a difference in the sense that you would have to move from 5.6 to the

next version. I do not see that as a huge difference. I agree with the backwards breaking reason

for changing numbers, however, I don’t understand why we are not doing it.

Response: I would love rev more frequently and have minor versions more frequently such that

we can fix issues in the language that needs to be cleaned up or fixed. We talked about this in

the past and the issue is that we still have to maintain the Version 5 line for some period. I do

Page | 35

not see how we can start breaking all of the content that is out there. I would like to think that

there is a split in the community between those who support SCAP, and are after SCAP

validated, and those who are using OVAL because it solves the problem for their product and are

not necessarily interested in SCAP or SCAP validation.

Response: Content is driving the concerns about doing major revs because major revs would

exist in a namespace and would likely invalidate the OVAL content from a schema validation

perspective. This puts us in a position where we will have to maintain two sets of content for

some period; potentially two to three years. While there is not a lot of cost in doing these types

of revs, there are many hidden costs when it comes to content that is broken from a backwards

compatibility perspective. This is one of the reasons why there has been a historic concern

regarding a major versioning change.

Response: You use the word broken, but is it broken simply because it no longer adheres to a

new schema?

Response: Yes.

Response: Assuming that one were to carefully devise changes to the OVAL Language such that

they did not invalidate the semantic content of the older OVAL content, providing an XSL

transform would allow one to move the older content to a newer version of the language and

would obviate some of the concerns that people would have with the adoption of newer easier

to use schemata.

Response: The issue is if we wanted to come up with a major version, an XSL transform to auto

transform the content forward would help. However, I have heard from vendors that there is a

cost associated with re-queuing the content and, if something does not work, the customers will

complain.

Response: That is good if you embed the XSLT in the engine.

Response: Why even transform it, the content identifies schema.

Response: To make your product support both versions.

Response: It is an ongoing maintenance problem. There may be a desire to upgrade to newest

version of OVAL and having a path forward through a transform or upgrade process is desirable.

Response: We will talk about content maintenance in more detail during the next session.

Response: If we are talking about revving more frequently, there are many hidden costs that we

should be thinking about such as updating documentation, writing reference implementations,

and the time that it takes the community to review and implement the schemas to ensure there

are no problems. All of these things have to be repeated every time we do a rev. The more

frequently that we rev, the more overhead we experience.

Page | 36

Response: Vendors have the same issue from a QA perspective. The features we have are going

to be cumulative, but if we have to do three releases to get there, it is going to cost much more.

In addition, I don’t know how frequently our customer base can even upgrade their products.

Response: Determining what the appropriate iteration level should be for these types of efforts

is a complex problem. There is a great deal of impact one way or another.

 What is the immediacy of the need that prompted these suggested changes to the OVAL
Language? If it is an immediate need, due to very large result sets, this could be added as an
optional item. If people did not implement it, they would simply carry on by ignoring that
particular thing. That could be a caveat of some vendors’ implementations. From a technical
perspective, I regard the application of a filter, at the object collection time, as almost directly
symmetric with the analysis of collected objects from the standpoint of applying a test or
criterion. I don’t think this would be particularly disruptive to most implementations of OVAL
and it would be beneficial because it would allow people to keep their result sets down as long
as they were aware that such a feature existed.

Optimization Capabilities for Version 6.0

Unlike adding optimization capabilities in Version 5.8, Version 6.0 is not restricted by the requirement to

maintain backwards compatibility as defined in the OVAL Language Versioning Methodology which can

be found at the following link:

http://oval.mitre.org/language/about/versioning.html

As a result, there is a chance to learn from our experiences with the language over the years and

improve and simplify the language at the same time.

To promote discussion, the community was asked to consider the impact of making all entities

searchable in the context of Version 6.0.

Impact of making all entities searchable

 Do we really need states?

o What about filters and ranges?

o What would a test look like?

 Could results be based on the existence of items?

 Do we need object entities to be required?

During the discussion of the issue of looking into Version 6.0, the following questions and comments

were made:

 Does anyone have any thoughts on getting rid of states?
Response: We talked about dual role of checks against states. It does not only check that you

match a state but also the existence or non-existence of a particular item. If you are not

searching for a specific thing and then comparing against state, you lose that ability to

http://oval.mitre.org/language/about/versioning.html

Page | 37

differentiate between whether or not something exists and whether or not it is the particular

configuration that you care about.

Response: You would only be collecting the particular things that you cared about. If you found

an item, you would know whether or not it existed and if it matched.

Response: But, I would not get the password length is 12. If I filter from the very beginning, for

the length is 12, I will not get the item that says the length was 8 instead of 12.

 I am a big proponent of not making backwards breaking changes if we do not have to. I don’t
see any of these as required.
Response: These are not required, just things to think about.

Response: I tend to agree. It doesn’t seem that any of these backwards breaking changes would

advance the language.

Wrap-up Discussion

To conclude this discussion the group was asked the following questions:

 Are there other ways to optimize item searches?

 Is this a problem we would like to address?

o When would we like to make a change?

o Do we need item optimization for every object?

o How flexible does a solution need to be?

o Will solutions be feasible to implement?

 Other questions, concerns, comments

In response, the following comments were made:

 Does anything stick out as other ways to optimize item searches that we did not talk about
today? Any different ideas?
Response: It would be useful, if we are to do optimizations, to have an explicit or implicit

ordering of things that are evaluated. The best you could do, if you come up with one or more

optimization techniques, is to do a partial ordering of all of the tests or the object filtering. It

would be possible to put an optimization into an OVAL interpreter if you said that you would

always restrict yourself to objects that met or did not meet a particular test implicitly without

saying it explicitly. For example, if the fundamental test in question was that all files on a system

exhibit a certain state, there is no reason that you would have to slavishly collect all of those

objects and then subject them to the test if you simply folded the test into the object collection

phase.

Response: That is essentially what the filter is doing.

Page | 38

Response: But, it would not, it is not necessarily that explicit if you were to just go ahead and do

it implicitly. You would not get a lot of opposition from people that didn’t want to see the 15 or

30 thousand files present on the system for each and every object.

Response: But, in doing that, you’ll lose the ability to separate the object collection from the

object evaluation.

Response: Exactly.

Response: That is an option that one tool could make.

Response: It seems you also lose the location of the specification of where the test evaluation

actually occurs. You would have to put an object in the criterion.

Response: The OVAL Language is a functional specification and not a procedural specification.

There is nothing that says that the objects must be collected. One could easily traverse an OVAL

Definition document; perform each criterion one by one, evaluate the underlying tests, and

come up with the same result. It’s not necessary to postulate the existence of a large set of

collected objects and the like.

Response: Right, but even in that case, you would still need to have a test that references that

object or you would never get to the point where you can evaluate it.

Response: I understand that. It is not necessary to postulate the existence of an object in the

collection phase followed by the evaluation of state criteria which means that there’s no reason

not to combine them. There is no language restriction that says one cannot combine the object

collection phase with the object evaluation phase.

Response: A concern was raised that, downstream, if someone takes the results from a tool that

has done that optimization and has not collected all of the items because they realized that they

only needed 10% of the items. If you tried to walk that results document, you would see the test

passed the check which said check_existence = all. This says that all files exist and

even though you have not actually recorded all in the document. As a result, there would be

inconsistencies which we would need to figure out how to handle.

Response: That’s exactly what some people are asking for as described earlier in the afternoon.

 Short circuiting is another optimization. It does cause problems when you get to the
remediation phase except in the case of the precondition. In that case, because OVAL does not
have a precondition, you are evaluating the criteria and then you have to evaluate the rest and
it does not have value there. In other cases, for remediation purposes, it does make sense to
evaluate it. A way to short-circuit only sometimes would be beneficial, but I do not have an
answer right now.

 Do we need to do something in Version 5.8 as far as adding a filter element? Is that something
that’s necessary to do?
Response: The community stated that there was a need to add a filter element in Version 5.8.

Page | 39

Response: A concern was raised that if you do not do something, as general as the filter

mechanism, you increase the idiosyncratic nature of the language. It becomes much harder for

people to understand what they are supposed to be doing because on one test they may be able

to use a behavior and others they may not whereas the general solution of filtering at object

collection is far easier to understand and more closely approximates the real word thinking of

someone crafting a particular test.

Response: It does have some potential impact on being able to report on the exceptions. If

reporting on the exceptions is important, you need to make sure that the objects that are the

exception aren’t included in the results.

Response: One can still filter and retrieve all world writable files without necessarily producing

the list of all non-world-writable files.

Conclusion

At the end of the discussion, it was concluded that the need to optimize item searches is necessary and
should be addressed in Version 5.8 of the OVAL Language. Out of the proposals to optimize item

searches in Version 5.8, the first proposal of adding an unbounded <filter/> element, to all objects,
received strong support from the community. However, it was also made clear that there is a need to
discuss and provide a mechanism for logically combining <filter/> elements in an explicit manner.

Least Version Principle for OVAL Content

Background

The OVAL Repository contains content contributed by members of the community, and provides that

content for tool and community consumption. The discussion on the versioning policy started with an

overview of the current policy.

Currently, the OVAL Repository only serves one version of the content, in the latest version of the

language. With every new release of the OVAL Language, the content in the repository is moved forward

as well. No actual changes are made to the content, and deprecated language constructs are not

removed. This policy is easy to maintain, and with one version of content, it encourages tool

compatibility with the latest version of the language. The downside is that there is no history of an OVAL

Definition captured in the repository, and the burden is placed on the user or tool to figure out how to

handle content with a later version number.

There are several key points to consider when evaluating any changes to the versioning policy:

 How difficult will it be to keep the repository up to date with accurate versions?

 Will there be a significant investment required in tools and process to handle the new policy?

 Will there be any burden placed on content creators?

One of the primary goals of the OVAL Repository is to make content creation as easy as possible,

to encourage a large content submitting community.

 How will the new policy affect tools and backwards compatibility?

Page | 40

 Will a change affect vendor tools, the amount of time it takes to process content submissions, or

the performance of the OVAL Repository site?

The OVAL Repository also serves as a model for other content repositories, so any proposed changes

should be considered from the perspective of what a general OVAL repository should support.

Proposals

The proposal presented to the group was to determine the least version for each item (definition, test,

object, state) when importing to the repository. There were two options presented for how to

communicate this information: either at the document or definition level. Having the least version at the

document level would not change the language, and would require no changes to tools. However, in a

large document, it may potentially cause a high least version because of just one definition, even when

the rest of the definitions have a lower compatible version. Marking the least version on each definition

would require a small change to the language, and would require tools to change the way they process

OVAL Documents. This would be a more granular and accurate way to communicate version information

in the document.

Discussion

A question was asked regarding how content was stored in the repository after processing. An answer

was given that we store both the individual parts of the content, as well as the entire XML fragment, to

allow a fast search capability, as well as fast retrieval of XML.

The suggestion was made that instead of validating against all schema versions, perhaps we should just

compare the differences between versions. This would require having an algorithm for tracking changes

from version to version (that is 5.6 -> 5.7, etc.)

The question was asked if this issue only affected major releases, and the answer was given that it

indeed affects minor versions as well.

A comment was made that NIST has seen and dealt with this issue by schema validating content to

determine least version, in a similar manner to how MITRE is proposing.

A suggestion was made to mark content only at the definition level, understanding that it would have an

impact on reusable items like test, objects, and states.

A comment was made that the use of namespaces could alleviate some of the issues here by

documenting the different versions at the XML fragment level.

Conclusion

The consensus was that there was a large benefit to implementing the least version principle, as it

would help SCAP-validated tools use the content in the repository. There was not a clear consensus on

specifically what method to use, and there were several additional features desired by the community.

Also, there was a suggestion to make multiple versions of the repository available; specifically, to have

an SCAP stream that is compatible with the current version of SCAP. It was noted that the benefit of

Page | 41

these additional features would be weighed against other priorities, and that discussion would definitely

continue in the OVAL Community Forum.

Application Specific Detection

Background

The OVAL Language currently contains two application-specific schemas: SharePoint and Apache. The

SharePoint schema exists to provide a method for accessing SharePoint data as previous mechanisms

found within OVAL were found to be inadequate. The Apache schema exists to answer one question: is a

particular version of Apache installed?

The Apache schema documentation for the httpd_object states:

“The httpd_object element is used by an httpd test to define the different httpd binary installed

on a system. There is actually only one object relating to this and it is the collection of all httpd

binaries. Therefore, there are no child entities defined. Any OVAL Test written to check version

will reference the same httpd_object which is basically an empty object element. A tool that

implements the httpd_test and collects the httpd_object must know how to find all the httpd

binaries on the system and verify that they are in fact httpd binaries.”

Because the httpd_object refers to all httpd binaries on the system, a system scan would need to be

performed in order to discover all binaries of the name, “httpd”. The method and scope of the scan is

not defined and thus left up to the implementation to define. For example, one implementation may

only scan the running processes, while another implementation may only scan the local file system while

omitting mounted network attached devices. The consistency of results between implementations is at

risk and cannot be guaranteed because of this.

This topic has been recently discussed on the oval-developer-list. The archives of the conversation can

be found here:

http://making-security-measurable.1364806.n2.nabble.com/apache-httpd-test-

tp4985454p4985454.html

The primary suggestions for addressing this issue were:

 Provide an expected path to search under via attribute or child element on httpd_object

elements

 Leverage platform-specific mechanisms for verifying installed software (the Windows Registry,

RPM, DPKG, etc.)

 Remove application-specific schemas that define tests which could be performed using

conventional OVAL mechanisms

The problem of handling version information for specific applications extends well beyond Apache. As

such, the existence and purpose of application-specific schemas needs to be re-examined.

http://making-security-measurable.1364806.n2.nabble.com/apache-httpd-test-tp4985454p4985454.html
http://making-security-measurable.1364806.n2.nabble.com/apache-httpd-test-tp4985454p4985454.html

Page | 42

Discussion

During the course of discussion the following comments were made:

 In general, the idea of removing or disallowing the creation of application-specific schemas is

bad. SharePoint demonstrates the value of application-specific schemas by providing methods

for accessing data that was once inaccessible. However, as n the case of Apache, I do not see a

problem with removing application-specific schemas which define tests that can be performed

using OVAL constructs and best practices.

 OVAL should encapsulate a series of trusted commands that can be invoked on a particular

platform for gathering data about a particular application or platform.

Response: There are obvious security issues with allowing OVAL to invoke scripts or binaries.

Response: More than likely you are using OVAL for checking for the existence of a CVE or

vulnerability so by invoking a particular binary, you could be exposing the system to a

compromised or vulnerable binary. I am in favor of having an application-specific schema and

checks because sometimes you can’t leverage package management systems for discovering

versions of installed software. For example, RPM doesn’t detect the version of Apache that is

bundled with some Oracle software.

Response: So given the case that you cannot always trust a binary to be executed to gather

information, the intelligence for determining the vulnerable state of an application and then

magically pulling out the version information must be built into every OVAL-compliant tool. Is

that feasible?

Response: We cannot leverage utilities like strings, or rpm, or dpkg to pull out this information.

We can’t require tools to decompile binaries and analyze the code. The underlying problem is

with the release and installation procedure of applications on various platforms; it’s a problem

that OVAL is not intended to fix.

 As we have SCAP encompass more and more applications, we will require more application-

specific schemas. Relative to this issue, at NIST we have the NSRL (National Software Reference

Library) which is a database of hashes for applications. They are congressionally chartered to

purchase and hash software. We are trying to work with them to link up CPE information and

these hashes.

Response: Apache is a locally-developed product in essence, because most users who install

Apache compile it themselves so as to install particular modules and options. As such, an

organization would need to have an internal database of hashes for their internal software

configurations.

 OVAL cannot go on to write application schemas for each requested application. The language

would grow far too large. We need to deal with this now while we only have two schemas.

 We need to address these schemas on a case-by-case basis and under a lot of scrutiny.

SharePoint demonstrates the value of application specific schemas, and others may come up in

the future.

Page | 43

Conclusion

In general, schemas like the Apache schema were seen as lacking clarity and thus, should be removed. It

was felt that if application information could be gathered using conventional methods content authors

should use them instead of proposing a new schema. However, as is the case with SharePoint, if a

schema adds functionality to the language and allows once inaccessible information to be gathered, a

new schema should be proposed and added to OVAL.

Moving forward, the current Apache test will be deprecated and removed in a later release, pending

approval. Current content that uses the http_test should be updated to leverage existing OVAL

mechanisms for binary discovery.

Removing the Apache test and rewriting the test using conventional methods guarantees the

consistency of OVAL Results among different implementations. By removing ambiguity and requiring

authors to provide scoped information, we can place more trust in the content being consumed.

By addressing the issue of application-specific schemas early (while there are only two) we establish a

mindset for proposing and adding application-specific schemas to OVAL in the future.

Adding Datatypes

This topic was not discussed and has been raised on the oval-developer-list. This discussion was planned

in case there was extra time on the agenda.

Page | 44

Tuesday June 15th

Cross-SCAP Standardization

Dave Waltermire led this session and announced he planned on covering more than just SCAP

Standardization, but also cross-protocol standardization, including ideas from the community on

improving specification standardization, core schema standardization, a design pattern on request-result

reporting, and identifier standardization.

Cross Protocol Standardization and Architecture

The first topic addressed was standardization using a common design pattern over multiple protocols.

To standardize the way in which requests and responses are handled from a data model perspective,

Dave mentioned three endpoint protocols (i.e. protocols that interact directly with assets): Security

Automation Protocol (SCAP), Enterprise Remediation Protocol (ERAP), Event Management Automation

Protocol (EMAP). Dave suggested that there is a common design pattern that is used to build endpoint

protocol stacks, i.e. a composable architecture which starts with smaller building blocks to build up

functionality as you get higher up the stack.

In designing the endpoint protocol, Dave focused on the request / response model, where the request is

the action to be performed and the response is the results of performing that action. The design should

be highly modularized to enable adaptability of use cases. Conceptually, the Request / Response Model

would contain an Action Request and an Action Response. The Action Request would indicate the action

or operation to be performed on the asset and the format of the results to be produced: in SCAP this

would be the SCAP content that is to be assessed on the host as well as OVAL or OCIL or XCCDF

directives to indicate the level of detail for results. For ERAP, the desired remediation, in the form of a

Common Remediation Enumeration (CRE) identifier, should be included as well as meta-data that might

describe additional processing or decision-making that would need to be made with regards to the

remediation action. The Action Response would be the result of performing that action and it would

capture the related results from that request. It would focus on identifying the actor that responded to

the request and the asset that the request was targeted toward. In SCAP, this would be assessment

results, the typical SCAP-validated results that currently get produced. In ERAP, it might include what

the disposition of the remediation action was, whether it was applied, or failed, or a boot is required,

etc.

There is currently no specification for the Action Request Format. The closest is the notion of an SCAP

data stream, which is currently included as a bundle of XML files that generally get zipped up and passed

around, although there is a new proposal of a super-XML instance that contains all of the pertinent

XCCDF, OVAL, and OCIL content, so a single document could be used instead. Similarly for ERAP, a list of

CREs could be used, or a more elaborate step-by-step listing of actions that need to be taken. Results

directives could be used to negotiate the level of reporting for XCCDF, OVAL, and OCIL; the result

directive could also be used for some basic negotiation of what assets identifiable data points are to be

Page | 45

captured. Suggestions from the audience as to what should be included in this model were provenance

information with digital signatures and a run-time instruction set that could tailor a bundle interactively.

Dave then presented a notional representation of the SCAP Request payload, which included each of the

individual documents in an element – any of the elements could be extracted into their own separate

instance, if that was desired. Advantages of this model are that the SCAP use case can be specified (by

specifying a string that states which use case is being supported); the SCAP version can be specified; it

allows additional Schematron rules can be written to enforce referential integrity between documents,

and it allows a hash to be calculated over the entire bundle. There were some questions about the

benefits of specifying the use case in the content. There was also concern about generating a CPE

dictionary for each action request to be sent, and the possibility of making it an optional component was

discussed. A suggestion was made to allow content to be included in the bundle and other content be

included by reference. A question was posed as to whether it was worth standardizing on such a light-

weight wrapper.

The notional action response model was introduced and it has been designed to include a Report

Request Information Block (for provenance and continuity with the original request), the Asset Subject

Identification (to describe what the subject was for the action), and the Result Block, of which one or

more are allowed. A question was asked as to whether only one device assessment in each payload,

and it was responded to that there are discussions as to whether allow multiple assessments per

payload. The Result vetted data will contain when the results were generated, what tools were used to

collect the results, etc. – similar to what exists today in OVAL and OCIL Generator Elements. It was

pointed out that OVAL Results and OCIL Results might not be available at the same point in time, in

which case they would have to be contained in separate payloads. A part of the Result Block is the Asset

Source Identification, which leverages the identifiable information described in yesterday’s OVAL

discussion. The difference between the Asset Source and the Asset Subject gives context to the source

of the information relative to the results being produced. An attendee pointed out that currently

Assessment Results Format (ARF) allows you to package multiple asset reports into a single document,

which is a very useful feature. The Result Payload in the Result Block would be a lightweight bundle that

contains the XCCDF, OVAL, and OCIL results. There was a question as to why it would be necessary to

include OVAL Results along with XCCDF Results – the OVAL Results wouldn’t add much in this

circumstance. There was a question about the timeline for these concepts and Dave replied that these

ideas are actively being worked at NIST and the hope is to include them in SCAP 1.2, which would mean

validation would start in early 2012. In response to a question as to whether aspects of the model

would be optional or required, Dave said it had yet to be determined and turned the question back to

the attendees, LtCol Wolfkiel suggested that it should be optional for products to exchange the bundles

as described in Dave’s presentation. In response to a question, Dave explained that this model

essentially breaks ARF up into modular components. Mike Kinney made the point that ARF is actually

only a response language and Dave acknowledged that the complementary language to prompt the ARF

response. LtCol Wolfkiel mentioned that that was the intention of Policy Language for Assessment

Results Reporting (PLARR). In response to a questioner, Dave described that the SCAP Result Payload

model he was describing can carry a variety of payloads and is not restricted to XCCDF and OVAL results.

Page | 46

Jon Baker started a discussion about the organization of results from OVAL and XCCDF – should there be

another standard to organize results? Perhaps this new standard could be focused on use cases. Dave

endorsed the concept of formulating a Results Working Group to help refine these ideas.

Specification Standardization

Dave next addressed the topic of the standardization of specifications, and stated that NIST has

developed plans to create a common specification template so that all documents could have a common

look and feel, thereby making the documents easier to read. Were all specifications to have a common

organizational structure, then there would be a consistent presentation of content, less effort would be

required to understand the information, and (potentially) there would be more complete information in

each document. It’s also believed that a specification template would allow authors to create useful

specifications in less time. Dave then proposed a general outline for the template which included the

following sections: Introduction; Terms, Definitions, and Abbreviations; Conformance; Relationship to

Existing Standards; Conceptual/Data Model Overview; Implementation and Binding; and Appendix. A

discussion about binding ensued and the point was made that having multiple bindings defined for a

standard may be beneficial, but with the addition of more bindings, we introduce the need to define

how tools that support different bindings will interoperate and negotiate a binding of choice for

exchanging information. A suggestion was made to move the Use Cases section from the Appendix up

into the body of the document because the complaint is frequently made that standards are trying to do

too many things. However, Dave thought the Conformance section might address that need

appropriately; also it can be very challenging to write good use cases. LtCol Wolfkiel warned against

requiring all products from having to support all uses cases. Another attendee advocated for keeping

the Use Case section in the Appendix because it will tend to grow over time. There was a question

asking for clarification of whether “Purpose and Scope” in the Introduction was intended for the

document or the standard. Another questioner wondered whether the document could be published

similarly to the way that the W3C does.

Dave briefly touched on the topic of separating the conceptual model from the findings – it might be a

“best practice” to write a separate specification for the logical model and the bindings. Dave felt this

would be a situation to make a decision on a case-by-case basis. Dave then introduced a notion of a

similar concept being applied to identifiers, syntax, and semantics from enumerated list authorities – i.e.

define what the identifier looks like in one specification and then define what the enumeration is in

another specification. There was no reaction from the attendees to this suggestion. Dave mentioned

that this model is being followed by CPE.

Schema Standardization

Next Dave moved onto the topic of Schema Standardization.

Core Schema Use

Dave began by discussing the concept of a Core Schema, which would contain things like common

references to be used across specifications, with a focus on core concepts that every specification uses,

allowing us to consistently express those concepts. Potentially, this would allow us to have an easier

time developing because common code could be written against common concepts. However, it would

Page | 47

introduce a lot more complexity in how the schemas are managed. Updates to the core schema would

need to be coordinated with each of the individual specifications. Possible candidates for core schemas

include OVAL and OCIL generator elements; XCCDF, OVAL, and OCIL data feeds; and identifier patterns.

Mike Kinney asked whether this model would be just for SCAP or a full beta model for other NIST

protocols too. Dave suggested that the effort would start with SCAP, but then perhaps could extend to

others. Jon Baker suggested that there might be some value in breaking up the SCAP schemas into

smaller, more granular pieces, which might make it easier to implement.

Identifier Conventions

Dave then turned the discussion to Identifier Conventions. Currently there exists two basic identifier

schemes: URI Basic Syntax (used by OVAL, OCIL, and CPE) and a fragmented expressions (used by XCCDF,

CVE, and CCE). When trying to develop XML schemas using various data types, challenges are presented

by the specific formats of the various identifiers. There has been some encouragement to use the xsd:ID

format, but since it is derived from non-colonized name, so the data types that are URI-based cannot be

used. The same can be said for xsd:NCName. URIs have the capability to reference some fragments.

Many implementations of RDF require that it follow a URI general syntax; i.e. colons after the first

scheme parts are not valid, which causes many tools to reject the URI-based IDs. In an effort to try to

standardize how various forms of identification are represented, Dave proposed a few different

conventions for various types of identifiers.

 For CVE and CCE, use the fragment convention

 For XCCDF, OVAL, and OCIL, use the URI Basic Syntax

There was some discussion over the benefits of this scheme, which was made more confusing because

of inconsistencies on the slides.

Remediation

This section is a summary of the remediation discussions held as part of the Security Automation

Developer Days. The purpose of the session was to discuss in some technical detail efforts at developing

emerging standards in the area of enterprise information security remediation, with a particular

emphasis on progress made since the Winter Developer Days 2010 event held February 22-24, 2010 at

NIST in Gaithersburg, MD.

Enterprise Remediation Automation Protocol (ERAP)

The first remediation session was a brief presentation by Chris Johnson of NIST introducing the

Enterprise Remediation Automation Protocol (ERAP). ERAP is a collection of emerging open

specifications intended to standardize remediation activities across the enterprise. It is envisioned as

including community-developed specifications addressing such capabilities as:

• uniquely identifying remediation actions

• tracking supplemental information about remediations

http://msm.mitre.org/participation/devdays.html#winter2010
http://msm.mitre.org/participation/devdays.html#winter2010

Page | 48

• describing remediation policy

• controlling remediation tasking

• expressing precise machine-readable descriptions of remediation actions

• encoding remediation results.

ERAP is similar to, but distinct from, the Security Content Automation Protocol (SCAP).

A projected timeline was presented of the anticipated release of various publications related to ERAP

and its underlying specifications. In calendar year 2010, development efforts are expected to

concentrate on a standardized identifier scheme for remediation actions (referred to as the Common

Remediation Enumeration or CRE), codifying useful additional metadata for remediations for various use

cases (Extended Remediation Information or ERI), and a control language for communicating specific

remediation tasking. For further information, refer to the presentation.

Remediation Research Project Report

Mike Kinney of the US Department of Defense gave a brief overview of a DoD research effort to build a

functioning reference implementation of a remediation system following the ERAP model. This proof-

of-concept will include a remediation manager tool which will consume remediation policy documents,

including standardized identifiers and additional metadata for remediation actions, and allow the user

to make remediation decisions in the context of that policy and standards-based assessment results

(e.g., apply a specific patch on 5 particular end systems). The remediation manager will then have the

capability of enacting those decisions as remediation tasking to various software remediation agents.

The agents will in turn respond with the results of attempting those remediation actions.

The proof-of-concept system being developed will use the open specifications as defined in ERAP where

available. However, the timeline of the research effort is more aggressive than the naturally slower

pace of consensus-based community standards development, so the project expects to effectively

develop prototype versions of several of the proposed ERAP specifications. Where possible, these

prototype formats and other lessons learned will be shared with the community to assist in designing

the consensus-based specifications.

During the discussion, several participants expressed an interest in focusing near-term efforts on

developing an OVAL analog for remediation: the low-level, machine-readable language for precisely

expressing what remediation steps to take on an end system. While ERAP does propose such a

specification, tentatively referred to as OVRL, neither the ERAP roadmap nor the DoD reference

implementation effort currently include plans to develop OVRL in 2010.

For further information regarding this DoD remediation research effort, refer to the presentation.

Common Remediation Enumeration & Extended Remediation Information: Technical Issues

Matthew Wojcik of MITRE moderated a discussion focused on technical issues arising from two of the

proposed ERAP specifications, the Common Remediation Enumeration (or CRE) and Extended

Page | 49

Remediation Information (or ERI). While both CRE and ERI are emerging specifications still very much in

development, they are the most mature of the proposed ERAP components. They have been discussed

in a number of previous public forums, including the 2009 Developer Days event held at MITRE, the

2009 ITSAC conference in Baltimore, MD, the Winter Developer Days 2010, and a community

teleconference devoted to CRE held April 1, 2010.

The session began with an introduction to CRE and ERI. CRE is intended to provide standardized

identifiers for remediation options, a similar concept to CVE or CCE. ERI, analogous to National

Vulnerability Database (NVD) entries for CVEs, defines additional data about CRE entries which may be

necessary to support common remediation workflows. Definitions of terms for purposes of the

discussion were given. The identified use cases for CRE and ERI were briefly described, and the basic

components of CRE entries and ERI records were presented. CRE and ERI examples followed.

A participant asked whether CREs are associated with the platform where the indicator resides (CVE,

mis-configured CCE, etc.), or where the remediation is applied. Examples include firewall rules or other

network device configuration options that may prevent or mitigate various issues, or Windows Group

Policy settings which are enacted on an Active Directory server which may be a different platform than

the end system which needs to be remediated. This is an issue which had not previously been

considered, and will need to be addressed in the future development of CRE and ERI.

The concept of Content Decisions, a term borrowed from CVE and CCE, was introduced. For an identifier

system like CRE, Content Decisions (CDs) are the documented editorial policies that define what is in

scope for the identifier system, and how to split or merge issues when creating entries and assigning

identifiers. Since CRE is a the core of the ERAP model (much as CVE is at the core of standardized

vulnerability management, and CCE forms the basis of SCAP configuration management), CRE's Content

Decisions will have a significant impact on ERI and the other proposed ERAP specifications.

Several previously-discussed CRE Content Decisions were reviewed. These Content Decisions, already

considered adopted unless compelling new arguments could be raised, were presented to ensure the

participants had a shared understanding of CRE in order to move on to the consideration of new issues.

While there was discussion of a number of the previous CDs to clarify their intent or effect, all are

considered to stand.

The session then moved to consider issues for which there were not yet accepted Content Decisions.

The goal of the discussion was not necessarily to reach consensus on any topic at this point, but to have

a preliminary conversation to aid in drafting future proposed CDs.

Various aspects of CRE parameters were discussed. Consensus has been, and continued in this session,

that CREs should be parameterized, but many details remain to be decided.

The first topic related to remediation parameters was a discussion of whether system objects should be

parameterized, or only the characteristics of a system object included in the definition of the CRE itself.

For example, when considering setting file access permissions, should the file be specified as a

parameter along with the desired permissions settings, or should separate CREs created for each file of

Page | 50

interest, and only the desired permissions be included as a parameter? Various arguments were

presented for each approach, with no clear consensus reached. Further consideration and discussion of

this topic are required, with more specific examples and with additional input from those who write

remediation policy and report on remediation compliance.

The question of whether CRE parameters should be expressed in literal or conceptual form was

debated—whether parameters should reflect how settings are actually enacted at a low level on the end

system, or instead describe the effect in more human-friendly terms. For example, "0 or 1" vs "enabled

or disabled." Participants raised valid use cases for each option, but each was also argued against in

favor of reduced complexity. Concerns of whether the necessary information is available to provide

either type consistently were also discussed. In the end, consensus seemed to be that both literal and

conceptual expressions of parameters are needed at various points in enterprise remediation

workflows, and having a standard place record both, and perhaps also to map between them, might at

least encourage both types to be provided when possible.

There followed a discussion of the fact that some remediation statements imply simple parameters

which are straightforward to address (e.g., password lengths, screensaver timeouts), but others are

more complex or are abstractions that present greater difficulty (e.g., "disable" a Windows service;

would setting the startup type to Manual satisfy? Does the running state also need to be changed?).

Some commonly discussed "parameters," such as installing vs uninstall a patch or application, have

different methods or pre-requisites, and might be assigned different CREs through the application of

other Content Decisions. Consensus seemed to be that many complex or abstract parameters, if

allowed, would lead to ambiguities or potentially differing implementations, which would largely defeat

the purpose of CRE. Therefore, a proposal was made to include parameters in CRE where

straightforward and unambiguous, and split issues into separate CREs where problems arise. Additional

specific examples are also needed to advance this discussion.

The next topic raised the question of additional options to remediation methods that are not core to the

most pertinent change to the system's security model. For example, "quiet" or "no uninstall" options for

patch installations, or installation directory for application installs. Should CRE or (more likely) ERI

include such information, perhaps optionally? Some participants felt that this is more detail than is

necessary to include. Others thought that it would be useful (and perhaps necessary) at various points

in remediation workflows, and including it as an option in ERI could help standardize its presentation.

Additional discussion will be necessary.

Several other topics regarding CRE and ERI were briefly introduced but not discussed in detail, due to

time constraints. These will be discussed in future community forums. Refer to the presentation for

details.

Future community input on CRE and ERI will be sought on the NIST emerging-specs email list. Any

interested parties should be sure to subscribe to that list. See http://scap.nist.gov/community.html for

how to join the list.

Page | 51

Wednesday June 16th

Digital Trust

Harold Booth, of NIST, led the session on Digital Trust, which was a follow-up from the session at the

February Developer Days. Digital Trust in SCAP allows SCAP data to be digitally signed. The goal of this

effort for the short term is to find a format to express signatures in a common way so that the tools can

have an expectation of what this feature would look like and interoperate on that level. In the future,

the goal is to have a way to handle the compositionality of the content – there are issues with checking

the digital signatures of remote references and also the issue of tailoring.

Use Cases

Harold began a discussion about various uses cases

Content Use Case

(input) A content consumer needs to verify authenticity of a content stream. For example, if a user gets

content from the National Checklist Program web site, and it is claimed to have been composed by

Vendor A, a digital signature attached to the content can verify that claim.

(prior knowledge) Re-establish trust to content based upon prior knowledge. For example, if a user has

already received some content and now wants to check whether content she that received at a later

time or from a different source is actually identical content, a digital signature can verify that check.

Content Quality Assurance

An individual or organization signs content to assert confidence or trust in content. If content is

generated by Vendor A, but then Vendor B tests the content and now wants to put its “seal of approval”

on the content, it can do so by adding its digital signature.

Compositional Content

A content consumer would like to know and verify that a content stream is composed of multiple source

streams. If Vendor C combines content from Vendor A and Vendor B, and perhaps decides to augment

the resulting content. The content from Vendor A and Vendor B can be signed separately from the

newly created block, thus providing provenance information for the two original sections of content.

Results

An organization needs results signed at the point of creation in order to verify authenticity of results.

Results (expanded)

An organization needs results signed with source content identity and/or target identity at the point of

creation in order to verify authenticity of produced results. It is important to distinguish who needs to

sign the results; for example, a machine would need to sign results from an OVAL check, but a person

would need to sign the responses to an OCIL questionnaire.

Page | 52

Aggregated Results

Aggregation tools need to combine results and sign aggregated results. When combining results from

different sources, it may be important to be able to differentiate between the various results

components and their sources. Digital signatures make this possible.

Current Notional Digital Trust Model

Harold proposed for SCAP to use the XML Signature Syntax and Processing standard. This is a W3C

Standard, which has also been adopted by IETF (IETF RFC 3275). This standard is specialized to handle

XML data and is capable of canonicalization and transformation; it defers applications for verification

logic; and it has hooks for X.509 certificates and PGP keys.

Example Signature

Harold then displayed two XML Signature examples. There was a question about the impact of digital

signatures on content re-packaging. Harold felt that this is one of the open issues that need to be

solved.

Implementation Issues

Based upon the recommendations in FIPS 186-3, Harold pointed out that the following algorithms and

parameters need to be adopted:

 For RSA

o 2048-bit key

o SHA-256

o PKCS #1.5 padding

 For Elliptical Curve Digital Signature Algorithm

o 256-bit Prime Curve

o SHA-256

Harold then presented a depiction of the signing of an SCAP Data Stream and an SCAP Result Data

Stream, which would contain an enveloped signature.

Page | 53

Harold briefly described the difference between an enveloped digital signature, an enveloping digital

signature, and a detached digital signature. An enveloped signature would be embedded within the XML

document containing the signed content; whereas an enveloping signature would be over XML content

that would be found within an object element of the signature itself. The consequences of an

enveloped signature are that the document must have a placeholder to hold the signature, the format

of the content must be same for both signed and unsigned content, and that the signature and content

are coupled together. The consequences of an enveloping signature are that the processing of a

document requires processing of the signature syntax, and that the signature and content are coupled

together. A detached digital signature is not necessarily in a separate file, it is merely not contained

within the document that is being signed. For example, there can be a parent document that contains

both the content being signed and the digital signature. The consequences of a detached signature are

that the processing of the digital signature and the content are separated; the signature format and

content format can revision independently; and the digital signature and the content are separated.

There was some discussion about the dependability of PKI technology. Jon Baker pointed out that

XCCDF and OVAL already support XML signatures.

Harold mentioned that the depiction of the SCAP Data Stream and the SCAP Result Data Stream that he

provided would represent an enveloping signature, and he added that he would advise that he signature

be moved to the top of the data streams.

Harold was asked which of the three methods (enveloped, enveloping, or detached) he would

recommend, but he was reluctant to make a blanket recommendation, indicating that each method

could work well in various use cases. A questioner asked whether the digital signature is in a separate

file in the data stream depiction, but it was pointed out that the data stream actually represents several

components combined in a single file.

Next Harold discussed signing results and reports. It would be possible to have different signatures

provided by different sources on various parts of the reports and results. LtCol Wolfkiel then started a

conversation about whether digital signatures should be required within the content, or whether

vendors should be required to support such functionality. While there is merit in providing digital

signatures, there could be some signature performance impacts for large results data streams. He

advocated against the Validation Program requiring digital signatures. Dave Waltermire advocated for

the position of vendors being required to support digital signatures, but then users deciding whether to

use the capability in an operational environment.

Harold then mentioned two implementations that he has been working on. First, a Java implementation

using Java 6 and has standardized on an encryption API – JSR 106. The JRE implementation mostly

targets initials release. Other libraries may be available with more support as well as FIPS 140-2

validation. Next, Harold discussed a C# implementation, using .Net 3.5 on Windows XP or Vista. This

version has limited native support for the necessary algorithms and parameters. This implementation

also seemed to be geared toward the initial release of XML Signature and Processing. Harold queried

Page | 54

the audience about whether they felt that his testing of various implementations was useful to the SCAP

community, and the attendees answered affirmatively.

Open Questions

Next Harold discussed how to establish identity or associating content with a key. Harold suggested to

include the key within the KeyInfo element of the signature block and pointed out that this would

require a separate mechanism to associate a key with an identity, i.e. how a certificate would be made

available to an application is completely out of scope of this topic. However, there are ways of

associating content with an identity, they are already built into the standard, e.g. using X.509Data,

PGPData, or SPKIData. Harold pointed out that, from a PKI perspective, it would much easier to

implement a scenario in which there were relatively few signers, whereas it would be much more

complicated to support a situation with many signers. Harold is trying to encourage the acceptance of a

scenario with a few signers.

The group again went back to the topic of whether digital signatures should be mandatory within SCAP

and what that might mean. Concerns were expressed about adding the burden and complexity of digital

signatures to vendor products. Harold took a poll of the attendees and they favored providing X.509

data within KeyInfo, and thus associating content with identity, as opposed to just providing and

certificate and leaving the burden of associating content with identity to other means.

Harold then discussed some additional considerations. The first of these was transformations, which

could be used essentially as a denial of service, or can confuse an application as to what was actually

signed. Actually, removing transformations would simplify things. Therefore, Harold posed the

question: Are transformations needed? The consensus was that transformations are not really needed.

Next, Harold discussed compositional signing, and he stated that there were two primary options that

are available: using the reference element or creating a manifest which contains hashes of the

references. Consequences of using the reference element is that all references are processed (hashed)

as part of the core validation; a single failed hash causes the core validation to fail; but that it does not

require application logic to verify references. Consequences of using the manifest are: the manifest is

included as part of the signature block with hashes included; core validation can pass, even if the

references failed hash validation; and application logic would be necessary to process the references.

Finally, Harold covered the topic of authorization. He started by posing the following questions: Is a

common authorization model necessary? Is identity enough? What else is needed? LtCol Wolfkiel

suggested that we attempt to proceed without an authorization model and see how it goes. Harold

concurred with the assessment. As for whether identity is sufficient, Gary Gapinski suggested that,

based upon previous discussions, it was unclear whether identity is necessary. Gary noted that the poll

that Harold took earlier showed that the attendees leaned toward wanting to establish identity and thus

be able to infer trust – but that is not the same as authorization. Gary also agreed with LtCol Wolfkiel’s

suggestion. LtCol Wolfkiel stated that authorization is definitely needed by the DoD. Harold stated that

he didn’t necessarily expect to come to a final decision on these issues during this workshop, but just

wanted to get some opinions to help him work toward a decision in the future. Dick Whitehurst opined

Page | 55

that because the SCAP community uses a central repository for OVAL content, identity and authorization

can become a relatively serious issue. Dave Waltermire added that it is not yet clear whether in the long

run there will be a federated repository model or a single repository and suggested that these types of

architectural decisions need to be made before the authorization model can be determined.

Harold ended the session by re-opening an old discussion about whether to use CMS or XML-DSig.

Harold had formerly settled on XML-DSig after considering comments from the community. Dave

Waltermire said that white space normalization is also a problem. One attendee stated that the CMS

solution doesn’t sound good based on the existing infrastructure. Gary Gapinski concurred adding that

when content is being manipulated across platforms, it cannot be assured that the integrity will be

preserved. From these comments, Harold surmised that he community still favored using XML-DSig.

Harold listed the following documents as being important in understanding issues around digital trust:

 XML Signature Syntax and Processing

o http://www.w3.org/TR/xmldsig-core/

 XML Signature Best Practices

o http://www.w3.org/TR/xmldsig-bestpractices/

 Additional XML Security URIs

o http://www.ietf.org/rfc/rfc4051.txt

1. Cryptographic Message Syntax (RFC 5652)

o http://tools.ietf.org/html/rfc5652

CPE

The CPE session spanned 4.5 hours and included the following sections:

1. CPE Overview: Brant Chiekes (MITRE)

2. CPE Manager Concept Development Effort: Lt Col Joseph Wolfkiel (DoD)

3. CPE Naming Specification: Brant Chiekes (MITRE)

4. CPE Matching Specification: Mary Parmelee (MITRE)

5. CPE Dictionary and Language Specifications: Paul Cichonski (NIST)

6. Representing Incomplete Product Information: Mary Parmelee (MITRE)

CPE Overview

In the CPE Overview section, Brant summarized the CPE 2.3 work since the Winter Developer Days CPE

Workshop in February. Version 2.3 is scheduled to be released for public comment in July. Brant sent a

pre-release to the CPE discussion list on June 9 as a read ahead for today’s Developer Days session.

Today’s CPE session will not explain the specifications in detail. The Core Team assumes that participants

Page | 56

have previous knowledge of the specification. This session will be treated as a focus group for feedback

on the technical approach for CPE 2.3. The CPE Core Team strongly encourages you to send feedback to

the CPE discussion list. They have a very aggressive development schedule for the release of CPE 2.3.

The sooner they receive feedback on CPE 2.3 the better the chance that they will be able to address

your comments within the time frame of the 2.3 development schedule.

Following the Winter Developer Days workshop Brant formed a CPE Core Team to develop the CPE 2.3

specification. This team has worked intensively over the past few months to draft the CPE 2.3 suite of

specifications. The CPE Core Team had a CPE Developer web conference in May to report progress and

solicit feedback from the community. They released the pre-release draft specifications for informal

review on June 9. Finally today is the last opportunity for real time feedback from the community before

the draft specifications are released for public comment. The specifications are all now formatted as

NIST Interagency Reports (IRs). Following the public comment period, a final draft will be submitted to a

NIST IR review process for release sometime in September, 2010.

This is a complete rewrite even though it is a minor release. In terms of how the information is

presented, the CPE specification has gone from a single thirty eight page document to a suite of

specifications. They did not use most of the 2.2 verbiage. Instead they wrote new specifications while

maintaining backward compatibility with CPE 2.2.

Brant thanked the members of the Core Team. The specification development approach has gone from

more or less run and led by MITRE personnel with advice from the community to much more of an open

community-driven standard. This process is not yet ideal, but is moving in the right direction. The Initial

Core Team members included the MITRE CPE Team, the NIST SCAP Technical Team, Jim Ronayne and

Shane Shaffer from the DoD. Since then vendors Seth Hanford from Cisco, Kent Landfield from McAffee,

and Timothy Keanini from nCircle have joined us. The list of Core Team members can grow over time.

They welcome more participation. For this round of CPE development, the Core Team has committed a

great deal of time and effort. They have had multiple hours of teleconferences each week and have had

a lot of commitment from this group. Their participation has resulted in a much improved product than

it would have been without their participation.

Their goal for 2.3, given a limited amount of time was to address immediate needs; issues that they

were aware of and that were underscored and emphasized at the February CPE Workshop. They started

with this laundry list of things that the community would like to do with CPE. The goal still is to become

part of SCAP 1.2. They knew from the beginning that this would need to be a minor release due to time

constraints associated of the SCAP 1.2 schedule. This meant that they must maintain backward

compatibility with CPE version 2.2 while satisfying as many of the items on the laundry list of

requirements as possible.

CPE Version 2.2 will remain part of SCAP for multiple years. CPE maintains an official dictionary and

content that needs to be maintained over time. They put a lot of thought into easing the burden of

maintaining and upgrading implementations of the CPE 2.2 and 2.3 standards. They must maintain a

Page | 57

version 2.2 dictionary while supporting features of version 2.3. If you are happy with version 2.2 you can

continue to work with it for a while.

An important new concept in 2.3 is a stack architecture. The choice of moving to this architecture is

related to enabling composable capabilities without having to rewrite a monolithic specification. At the

bottom of the stack is the Naming Specification. This is a minimalistic specification. All of the verbiage in

CPE Version 2.2 about how to choose the values of a CPE name is gone. The CPE 2.3 Naming

Specification focuses on a conceptual structure for naming and a way of binding those structures to

encodings for machine transport. Naming is the foundation that specifies the conceptual model of a

product or platform name called a well formed name and procedures for translating that structure into

machine readable representations. The Matching specification builds on the Naming specification. The

Dictionary and Language specifications are peers at the top of the stack and build on both Matching and

Naming foundations.

In theory this new layered architecture will in theory give us the ability to add new layers over time that

builds on the stack to extend the baseline functionality to support various use cases. Understanding the

stack architecture is critical in understanding why certain things are present or absent in a given model.

For example, the functionality provided in the naming specification may be loosely defined and then

further constrained at higher levels of the stack such as the definition of wild card characters in the

Matching specification.

Brant gave an overview of what is new in CPE 2.3.

1. They had a clear request from the community to remove the prefix property, which imposed a set

relation on a CPE name that it turns out didn’t work very well. The prefix property has been

removed. Instead there is an abstract logical form (the WFN) that does not come with any restriction

on the implementation of this form. It is a conceptual interlingua for the purpose of defining

behavior without having to deal with the combinatorial explosions of ways that we would transform

to different bindings or encodings.

2. There are procedures for binding to an expression that could be communicated (transforming) to

machine readable representations. One could think of this like translating to a different form of

natural language (e.g. from English to French).

Page | 58

3. For purposes of backward compatibility, they needed to retain support in 2.3 for the 2.2 URI

binding. They have a way of representing products as the seven components of a URI binding.

However, they could not represent some of the 2.3 features in the 2.2 URI binding form. Therefore

they created a new binding as a formatted string without the constraints of a URI, which gives more

flexibility in defining the grammar of the string, what certain characters mean, and so forth. There is

some question as to whether we should keep the formatted string binding in the 2.3 specification.

4. They have defined a way to translate a 2.2 URI to a formatted string for up conversion of 2.2 content

to 2.3 content. However, the reverse translation is lossy, because the formatted string can represent

content that is new in 2.3 that did not exist in 2.2. The 2.3 has added features that have no meaning

in the 2.2 model if you take advantage of the new features.

5. They have a way in which a dictionary can be maintained that provides parallel 2.2 and 2.3 names.

6. They added new attributes that were clearly requested by the CPE community including:

a. Breaking out the software edition attribute to software edition, target software, target

hardware.

b. They added an “other” component, which is still debatable and may be removed. It is a grab

bag attribute for information that is not already captured in the defined attributes.

7. There were concerns about percent encoding in the URI form, which were addressed in the

formatted string. However, there are still outstanding concerns about escaping issues in the

formatted string.

8. They have provided support in this new binding for wildcard characters. In 2.2 matching was at the

whole component level, which was overly restrictive. The wild card characters will make matching

more flexible.

9. There is a whole new approach to matching that still supports the 2.2 matching semantics.

a. They split name level matching and language matching into two separate specifications.

b. They added support for attribute-level matching as well as name-level matching. Users can

compare the attribute level results between two names and interpret the results based on

whatever their use case may be. They also provided minimal name-level matching. The idea

is to provide matching tools that can be used to define different ways of comparing names

in order to get the answer that satisfies you use case.

10. In the Dictionary specification:

a. They made an effort to clarify what the rules are for accepting content into dictionaries.

b. There is a need for a centralized dictionary along with private extended dictionaries that

include proprietary or sensitive information that will not be shared. This introduces open

Page | 59

questions about how to address conflicts or naming collisions, but they are committed to

supporting a federated dictionary approach.

c. Expanded the dictionary to provide better provenance tracking and improved deprecation

logic.

d. They have provided a way for the new instance data to validate in the 2.2 schema.

11. The CPE Language specification has had no functional changes. It was just updated to align with the

other specifications. No significant changes.

Generally speaking 2.3 begins down the road of decoupling CPE names as identifiers from CPE names as

descriptions. From the beginning CPE names were both identifiers and descriptions or applicability

statements for purposes of matching. They could not simply drop functionality that was present in 2.2

and convert to a simple enumeration like CVE. Consequently, they took the approach to map a path for

more explicitly distinguishing an enumeration of product identifiers from a way of creating expressions

that can be used to match against a repository to identify things that could be instances of products.

Toward the end of today we will discuss a cross cutting issue. CPE 2.2 had two logical values of ANY and

NOT APPLICABLE. We introduced a new logical value for an attribute of a name called UNKNOWN. In the

course of trying to work out the issues associated with UNKNOWN. They ultimately decided to remove

UNKNOWN from the specification. It is present in the current specifications, but will be removed from

the next draft. However, we have a better idea of what we were trying to accomplish with it and we

have an idea of an alternative way to address the issue.

CPE Manager Concept Development Effort

Lt Col Wolfkiel gave an overview of a DoD effort to manage CPE names. The minutes for this

presentation will be released following public release approval.

The idea that the DoD has been working through as we look at fielding multiple sensors that all have the

ability to discover things that may be software on our systems; building asset databases that are not

consistent across the DoD. Different people may want to keep software that they have installed on their

systems private until a vulnerability is discovered on them. At the end of the day we need to know:

 What software is on our systems?

 What vulnerabilities do we have?

 What check lists do we need to be running?

 Is there old software that needs to be removed?

All of these things depend heavily on the ability to come up with standardized software names. This is

what we have looked to CPE to solve for us. CPE does not gracefully address some of these issues. For

example, the first day that a piece of software shows up on a system, it probably will not have a CPE

name, but we want to know about it. The questions are, What is the process whereby DoD sensors find

Page | 60

a set of artifacts that indicate a piece of software exists on a DoD system, and how do we get from that

state to where those sensors are reporting in a common CPE format?

They started working through the business logic of what it would look like to normalize software

management across a large federated enterprise. Lt Col Wolfkiel walked through a conceptual diagram

that depicts a target scenario for normalized software management.

In the DoD there are at least three defined tiers:

1. The DoD level, which is Cyber Command (formerly JTF-GNO (Joint Task Force Global Network

Operations) wants an enterprise picture of everything on the Network.

2. The DoD component level (e.g. Army, Navy, NSA, DISA) Each of these components wants to

know what is on their respective Networks.

3. Component networks can be further divided into geographical or other local installation

enterprises.

Effectively it is an N-tiered structure that we want to be able to support that takes ground truth from

the bottom to the top tier with some number of steps in between that we can support different levels of

knowledge and detail.

At the lowest level of ground truth, are sensors; asset management scanners, vulnerability sensors, etc).

Generally these are software sensors. Very few vendors are populating CPE information in their tools,

but we would ultimately like them to be able to do that. The sensors need to be able to communicate to

some centralized management capability and say this is all the software that I know about. If the sensor

doesn’t know what the CPE name is for a given piece of software then you need to be able to tell it what

the CPE Name is for that software. If no CPE Name exists yet, then you need to be able to make one up

until a CPE Name becomes available.

They also have the case where if this is not supportable locally, it can be passed through to the next tier

and normalized there. However that happens, at the end of the day, they want normalized software

names, preferably CPE Names across the DoD.

Given the first two requirements that they want to represent software found on DoD systems with CPE

Names, but cannot wait until an official CPE Name is created and included in vendor tools for each piece

of software that is found, they defined processes for how to manage software names in the interim. If

an indicator is found that you think is a piece of software, what do you do with it? Lt Col Wolfkiel

walked through an initial name assignment process diagram.

1. If the piece of identified software has a CPE Name, just use it.

2. If there is another CPE that has the same vendor and product name, but a different version,

then just update the version value and report that.

Page | 61

3. If no known CPE Name exists for vendor and product, but the data is gracefully partitioned into

vendor, product and version, then just convert that information into CPE format.

4. If it is not gracefully partitioned, then just take what you have, convert it to legal CPE form,

putting all content in the product attribute.

They think that this approach will allow us to report whatever information we have immediately and

map that to CPE at some later point in time.

Questions:

1. How often do you get a text descriptor of something that would go in the beginning of this diagram

(the bottom box)?

Response: That box represents output from their “trickler” tool, which looks for groups of characters

that indicate installed software (e.g. Apache 4.x or an OS fingerprint). It knows what are good indicators

and reports on those. In a lot of ways it is a descriptive string that is a set of characteristics of installed

software. Sometimes it will report things that are not indicators. An analyst looks at these strings and

can reject or accept a new name based on the validity of the indicators within it.

2. How dependent is this architecture on the idea that a CPE Name would carry all of the attribute

values that describe a device vice being opaque as we have talked about?

Response: Being opaque, such as being just a number is a problem if the vendor tool doesn’t already

know what that number designates, then there is no way to resolve it. If there were something that

could map it to an opaque identifier then the original string could be deprecated at some point.

3. Where in this workflow could we insert a reconciliation process that compares what is found to a

standard identifier?

Response: That is covered in a separate upcoming process.

4. You don’t care about the identification piece you only care about having a common way to describe

a product?

Response: It is kind of hazy where a description becomes an identifier, but at the point that I can

unambiguously describe it then it is identified. There are some things that even CPE cannot describe, like

products with different build numbers.

Response: You really just need a way of associating what you are finding on a system with some

common identifier at some later time.

Response: If we are able to associate products with unique identifiers, then if one vendor buys another

vendor, the vendor changes names, etc. That may be the point in the process where you want to

associate a product with a unique identifier.

Page | 62

5. Are the names just unstructured strings or are you taking into consideration the record nature of a

CPE Name?

Response: As much as we are capable, we are putting the right values into CPE Name attributes. But if

you cannot do that, then just overload the product field with all the information.

6. So in this workflow, there is some reference to the CPE dictionary as it exists to that date.

Response: Yes, that is the next process. That assumes that a vendor has done the research and maps

discovered artifacts to CPE Names.

7. If a vendor finds an artifact that they don’t understand will that information ever get into the

dictionary?

Response: We try not to call it a dictionary, but yes; it would be reported as a product in the asset

inventory. This is not the official CPE dictionary. It is the best effort at describing a product in the

reporting chain.

Response: That would require a download of the dictionary every day.

Response: Yes, and we are not sure how to fix that. The Marine Corps has approximately 40 thousand

separate applications on their systems. We acquired a list of four thousand of the forty thousand names.

It took two months to map these to CPE Names and submit to NIST. We are still not sure if they have

made it into the CPE dictionary. Obviously we need a way to get visibility into our systems pending an

approval process to get the data into the official dictionary. In the interim we want to have CPE

inventory that have dramatically less rigor. If you have lists of all the information that every sensor

reports, that is the starting point from which you manage your deprecation.

8. We do something similar, but we are looking to CPE as being the standard. We are hoping that our

intermediary form gets replaced by a CPE Name.

Response: The Marine Corps said that there is software on their systems that will not be reported to the

DoD and will have no CPE in the official dictionary. There may be DoD level software with the same

issues.

CPE management workflow: This is a parallel process on normalized software maintenance. This would

be part of an overall deprecation process whereby manual or automated means you would get a

response that may reject and deprecate the initial name or accept it and map it to a CPE Name. Mapping

relations would be tracked in an alias table of some asset management database. This is where you

would keep track of what to call this set of artifacts.

Comment: So this is where heterogeneous sensors that report the same piece of software differently I

reconciled.

Response: Yes, this is where we say that these sensor artifacts all mean the same thing and therefore we

should report it the same way.

Page | 63

Response: So there is a core concept of collecting artifacts and reconciling them in an asset

management database. A CPE could be considered a signature name that maps to different sets of

artifacts.

At the CPE management level, the management software takes as input the lower level (raw) sensor

data as candidate and map to the CPE Name if possible. Curated today by a human, if not a software

name can send feedback to stop reporting this information. Send a report that says for all the names

that you sent me, use these names instead.

Question: Does this delay the reporting process?

Response: This is where an automated mapping process comes into play, but we haven’t solved this

problem yet. We have data sets sample software and sample names, but haven’t implemented anything

yet. Hopefully it will scale to any Network.

Question: The things in the yellow box are artifacts not names, correct? Is CPE the best way to express

this description?

Response: Typically, if you have something that you think maps to a CPE Name, you want to track its

original description, and to what name it has been deprecated.

Response: These characteristics may or may not align with a CPE Name. Trying to force that into a CPE

Name may not be the best approach.

Response: We think that this artifact is a CPE Name, we look at it and determine if it is a CPE Name and

then map it if does designate a CPE Name. This is not a forensics tool that looks for unauthorized

installation of products. We are starting with the assumption that this is a registered installation and

trying to inventory what is there. We are not trying to examine every file on a machine and determine

whether it is software. That is a different problem.

Comment: This identifies a gap in CPE in that we do not have a solution for the zero day problem. From

a design standpoint, it seems like the front line there is some need to access a CPE dictionary.

Response: one of the things that we have discussed is a patch through, where if the CPE mapping cannot

happen at one level it gets pushed to the next level for analysis. We are still working through that

business logic. There is a requirement for a tiered structure, which complicates the logistics.

The sensor should be periodically packaging and reporting the information that it has to the validation

and deprecation process, then getting a report back as to what to call it in the future. Periodic updates,

reports back new deprecations, new names.

Comment: This implies that the management tool keeps track of every sensor that communicates with

it.

Response: Yes that is a key requirement. The management tool must track which sensor report on which

strings.

Page | 64

Response: That will not be stable if sensors move between tiers.

Response: Need to push up the raw sensor data is pushed all the way to the top tier.

Response: So I would need to go all the way to the top to see if anyone has ever mapped it.

Response: Names would be reported up to a centralized server that maps the names and pushes it

down to the lower tiers so that they all report the same going forward.

Response: What if a top tier rejects a name that is important to a lower tier?

Response: That could happen. We haven’t thought through this at the level of detail yet.

We will pilot this and release it as open source so that someone might pick it up and commercialize it.

Comment: Why not let the sensors report what they find and then map that to a name in a centralized

repository that has that mapping for you.

Response: Issue is that there may be hierarchies in asset databases. Some tools that we think of as

sensors think of themselves as asset databases. We want something that can be pushed to the edge

when necessary.

Comment: If the COTs tools could report CPE natively, then it prevents redundant mapping processes.

Response: In the absence of a zero day CPE you would have the same problem anyway.

Response: Yes, these are hard problems. This may not be the right long term solution, but it is better

than no solution.

CPE Naming Specification

The idea is to solicit specific advice for outstanding issues with respect to CPE 2.3. He reviewed the

rationale behind defining the Well Formed Name (WFN) conceptual data structure to define CPE 2.3

behavior.

Brant then gave an overview of the WFN. The CPE 2.3 Naming specification

 Defines the WFN as a set of unordered name attribute pairs describing a product name.

 Specifies the format of a WFN

 Constrains the maximum cardinality of the attributes in a WFN to a maximum of one attribute of

each type per name.

 Specifies that attributes can contain character strings, logical values (Not applicable or ANY), or

a set of valid values.

 Recommend that values be chosen from a valid values list, but does not mandate specific value

lists.

Page | 65

Brant then walked through an example of how the binding procedure works.

 The attribute pairs are unordered

 The canonical form escapes all non alphanumeric characters with a backslash

 Right now we only define the WFN are ASCII characters

For example, the CPE Name: cpe:/a:adobe:acrobat%43%43:9.2:-::-“unbinds” to wfn: *part=“a”,

vendor=“adobe”, product=“acrobat\+\+”, version=“9\.2”, update=NA, edition=ANY, language=NA+

The formatted string looks like a URI, but does not conform to URI constraints. We have added a version

specific prefix of cpe-23 for an easy way to distinguish a 2.2 form a 2.3 WFN. There is a requirement to

carry across non-alphanumeric characters from 2.2. A hyphen in 2.2 has become an NA logical value and

a blank in 2.2 becomes an ANY logical value in 2.3. We have also added wild card characters asterisk and

question mark. Wildcards can be escaped and interpreted as characters.

Question: The asterisk means any in the bound form. There is no requirement to have a character

before or after it?

Response: Yes.

Because we have no prefix property, there is no way to trim a CPE Name and so all attributes must be

populated.

Question: What is the point of escaping characters that don’t have a special meaning?

Response: Because they could be defined as special characters higher in the stack.

Question: why are we suing wild cards?

Answer: It is because of the unauthenticated scanner use case. The wild cards allow us to work with the

ambiguity. Embedded wild cards are never in the dictionary.

Question: Why don’t you just use CPRE.

Response: That is exactly what we have done.

Question: Why do we need to populate all fields?

Response: This general idea that the lack of a prefix property makes these peer attributes.

Right now there is partial escaping approach. We are still working on what should and should not be

escaped.

Question: Does the asterisk match anything and does it mean the same thing logically as the ANY logical

value, including a product with no edition?

Page | 66

Response: Yes, in the WFN it is ANY, in its formatted string bound form it is an asterisk. How it matches

depends on what side of the matching algorithm it is on. This will be defined in the Matching

specification.

Question: In 2.2 a dash meant null. We knew that there is no known value. This is equal to not

applicable in 2.3.

Response: The whole point of having ANY is to say that you do not know if there is a value.

Response: There are different ways of interpreting how to match identifiers vice patterns. It depends on

whether you are using a CPE Name as a description or an identifier. The Naming specification only

provides the mechanism for interpreting them further in higher level specifications in the stack.

Brant reviewed outstanding issues:

Issue 1: URI versus formatted string: We created the formatted string as a more flexible binding to

address the URI binding issues expressed by the community in 2.2. Should the formatted string actually

be a URI or a formatted string? We will still have the percent encoding issues and other problems that

were expressed as URI problems.

 In v2.2, CPE names are percent-encoded URIs, with colons used to delimit components

 In v2.3, we must preserve the 2.2-conformant URI as a legal binding, but it doesn’t have to be

the only legal binding—we can introduce new bindings, but must be able to specify a

mechanical 2.2→2.3 conversion

 We have heard a variety of concerns expressed against the URI

o Percent encoding/decoding inconsistencies

o Issues with colons as separators

o Impediments to implementing embedded wildcards

If we stick with a URI, we will need to redefine the way that we deal with wild card characters.

Brant asked for a show of hands if you will be hurt by the introduction of the formatted string. Two

people acknowledge that it creates more work.

Comment: by demoting it from an identifier to a name, you lose the semantics of an identifier.

Response: The identifier approach was already broken. Thing that are descriptions were used as

identifiers.

Response: All of the other identifiers can be easily put in URI form.

Page | 67

Response: CPE represents more complex semantics than some of the other standards and so should not

be used as identifiers.

Brant summarized the discussion: The consensus is that we stick with the formatted string.

Issue 2: Syntax of the formatted string. Should we stick with colon separators between attributes? Brant

asked Dave Waltermire to explaining why colon separators may not be a good idea. Dave replied that

one problem is that languages like RDF that encode using URLs require that colons be percent encoded,

which bloats the name. If the colons were replaced with a forward slash, this problem would go away.

Response: Replacing colons with backslashes makes it less human readable.

Brant polled the room for forward slashes vs. colons. Consensus was to use forward slashes.

Question: Why is there not an XML binding?

Response: There was not enough time to work out, but the WFN sets us up to be able to do that.

Response: If the slashes were colons, there would be an issue with XSID compliance, which requires non

colonized names.

Question: Why not put the version in the header of the dictionary file?

Response: Because CPE Names can stand alone. It is not always part of a dictionary.

Comment: Combining forward and backslashes is confusing.

Response: this brings us to the last issue.

Issue 3: What is the right escaping mechanism?

Comment: Most vendors are representing data in XML. It would be easier to just go to an attribute value

sets and use PCRE escaping.

Comment: Why not just distinguish descriptions from identifier names now and only require escaping

for the description type.

Response: Because it would break backward compatibility

Comment: why not just escape the characters that need to be escaped.

Response: That was the original policy, but moved away from that to accommodate regex.

Comment: We could just pick 4-5 characters and reserve them for interpretation in the upper level

specs.

Brant polled the audience: preference is to see as few escaped non alphanumeric characters as possible.

Page | 68

One other topic: Notion of packing the 2.3 data into 2.2 attributes (e.g. packing separate fields into

edition). We will not be maintaining two dictionaries.

We came up with an algorithm for packing 2.3 values into a 2.2 edition field using a tilde separator. That

would work fine as an identifier, but the blanks are potential issues in that you would get different

matching answers in 2.2 vice 2.3.

Name Matching Specification

Mary gave a brief overview of the new matching approach. The major feedback that was received at the

Developer Days CPE Requirements Workshop in February was:

 The all or nothing algorithm is too rigid

 Need a meaningful way to match incomplete information

 Need to match at the attribute level

 Need to be able to match attributes in any order

 Maintain backward compatibility with CPE 2.2

 Support basic tool interoperability

 Need to support a broad range of use cases

The new capabilities that were defined in CPE 2.3 Name Matching specification.

 A one-to-one comparison of a source CPE name to a target CPE Name

 CPE Language matching is “out of scope”. It is handled in the CPE Language specification.

CPE Name Matching specifies two phases of matching: attribute comparison and name matching.

Comparison results are based on set theory where matching results are relative to the set of all possible

match results. CPE name matching is determined based on the combined set of results (outcome) of the

attribute comparison phase of the matching process. The CPE Naming Specification defines two wild

card characters for matching incomplete attribute value information. The asterisk and question mark.

Outstanding issues:

How strictly to specify Name Matching: We want to provide some guidance at the name level for

interoperability purposes, but want to be flexible enough to foster innovation and apply to many uses

cases.

Name matching does not provide any required name level match

 An example of name matching is provided in the specification

 The method and common interpretation for comparison of attributes is specified in detail

Page | 69

 The combination of attribute comparison results that constitutes a “match” of one CPE name to

another is largely unspecified

 There is no required common interpretation of whether two CPE names are a True or False

match

Mary reviewed the trade offs. The advantage of leaving the majority of decisions about what constitutes

a CPE name match to be decided by CPE implementers at design time allows the flexibility to make use

case dependent precision vs. recall trade-off decisions at design time. The disadvantage is that the same

set of attribute comparison results can match in some circumstances and not in others. There is no

minimum baseline of interpretation for interoperability at the name level.

Question: Is the idea that you would define multiple matching methodologies and have the vendor

specify which ones that they comply with? What would validation against this specification look like?

Response: This is why we decided to define a small common matching capability to base evaluation on

for SCAP compliance.

Response: Less sophisticated users may need to choose from multiple algorithms for different use cases.

E.g. precision vs. recall. Can we somehow build it in to the SCAP program so that when we go to buy a

tool we can tell by what we are getting based on the algorithm that a tool is compliant with.

Response: What we are doing in the Name Matching specification. One piece is to provide a tool for

attribute level comparison and then define one name-level function that calls the attribute functions.

Given a bag of results, we can define certain outcomes. SCAP can further define constraints. We provide

new ways of matching that are outside of our scope.

We have defined four name level matching requirements now.

1. Source equals target (=)

2. Source is a subset of target (⊂)

3. Source is a superset of target (⊃)

4. Source and target do not overlap (≠)

Question: What about intersection?

Response: So far we have decided not to define intersection. We are not saying that it doesn’t exist, just

that we will not define it as a required name-level match. There is no reason that this cannot be defined

outside the specification. We provide the tools to do that.

Question: The problem with using CPE in CCE entries. The configuration concepts apply to some

products in the scope of Windows XP. We don’t know which ones to use.

Page | 70

Response: We have thought about that problem and similar problems. The approach that we are talking

about in the incomplete session will help with that.

Response: We could make a valid CPE name that would express the right level of granularity. But cannot

express to which products a CCE entry applies.

Mary reviewed an example of an attribute level comparison:

Question: If you have a wild card can you return the relationship?

Response: Yes, the set relationship. For example, in the example provided where version 9.* is matched

to version 9.3.2. It would match anything after the ‘9.’ in the version field.

Mary reviewed the four required name level matches describe the “and” joins of all attribute matches.

 Name Relationship = True If Condition

1 EQUAL (=) If all source = target

2 NO OVERLAP (≠) If any source ≠ target

3 SUPERSET (⊃) If all source and target are ⊃

OR a combination of ⊃ AND =

4 SUBSET (⊂) If any source ⊂ target

Page | 71

AND no source ≠ target

Question: If there is some subset and others are superset, then why is it a subset?

Response: Because we are constrained to comply with 2.2 semantics. That will likely change in the next

major version.

Question: There are a lot of cases where none of those rules apply.

Response: For any two names you will get some answer. The name matching is not the only way to

answer.

Comment: One way that we use CPE is that we use something similar. Users specify the platform and

then once they specify the platform, we allow them to choose from all of the checks that are implied by

that CPE Name. So that is a subset condition. The reverse of that is they can specify a check and get the

platforms that are associated with that check.

Mary polled the audience about the name matching approach and level of specification.

Question: Is the intent to allow users to tune the matching. There are times that I want to get a broader

set of results and other times I want a narrower set of results. Would this allow me to do that.

Response: there is nothing that precludes you from using it that way. That is one of many uses cases

that it supports.

Comment: From XCCDF platform element perspective. We would have to define at that point what we

want to specify how to leverage the matching criteria to get the outcome that they are looking for.

Comment: If you think about the 2.2 Matching algorithm it was an all or nothing match. We support that

matching plus the building blocks to create other ways to extend matching to take advantage of 2.3.

Comment: change NO Overlap should be changed to NOT EQUAL

Question: What is the source and what is the target? A common application is going against a database

with a description (applicability statement).

Response: This is about matching one source to one target name. The name can be any combination of

descriptor to identifier type CPE Name.

Mary polled the audience for a general opinion of this approach. Consensus is that it is an improvement.

Comment: The use case we use most is the matching instances on a system.

Response: That is outside the scope of Name matching. It is more appropriate for higher level specs such

as the dictionary spec.

Page | 72

Question: Is there any reason that source and target cannot have a wildcard? Shouldn’t we restrict

wildcards to one side of the equation?

Response: That is the subject of our next issue.

Comment: If you look at a SQL implementation you would never have wild cards on both sides of the

equation. Why not constrain it here as well?

Response: Let’s move to the wild card issue.

Wild Card matching: Right now there are no constraints on where wild cards can be used. They can be

on both sides of the matching equation.

Mary gave an overview of the defined Matching Criteria for wild cards:

Source Attribute Target Attribute Result

i i + wild cards SUBSET (⊂)

i + wild cards i SUPERSET (⊃)

i + wild cards ANY SUBSET (⊂)

i + wild cards k NO OVERLAP (≠)

i + wild cards NA NO OVERLAP (≠)

i + wild cards k + wild cards NO OVERLAP (≠)

i + wild cards i + wild cards ERROR

This approach provides the greatest flexibility to the user community, but allowing wild cards in both the

source and target attributes extremely complicates the comparison process.

Page | 73

The CPE Core Team’s current position is that the specification should:

 Refer CPE implementers to a standard regular expression specification for matching.

 Only specify the matching criteria for each kind of wild card matching.

 Do not specify wild card pseudo-code.

 Constrain wildcard usage by defining an error condition when wild cards are in both the source

and target attributes (no wild card to wild card matching).

An alternate suggestion is limited wild card to wild card matches:

Provide limited logic for handling wild card to wild card matching using PCRE/POSIX regular expression

pattern matching behavior:

 Only match if the patterns are equal and make no determination as to containment, which

allows us to return an answer in every case, and avoids the need for an extensive algorithm.

 A function hasWildcard(value) will return true if a value contains * or ?, and false otherwise

 A function isPatternMatch(pattern, value) returns true if the value will match the specified

pattern where the wildcard string is converted according to: * -> .* and ? -> .?

 a ^ prepended to the pattern and a $ is appended to the pattern and the PCRE/POSIX regular

expression pattern matching behavior is followed.

Comment: Suggest using PCRE. OVAL uses PCRE. If the guidance is to implementers.

Comment: suggest following SQL standard for this. Most people are using databases for this.

Comment: There is alignment from a SQL perspective.

Comment: specify that we use a PCRE style specification.

Comment: We would have to specify a substitution if we point to a specific standard.

Comment: We want to specify behavior and criteria. Not necessarily mandate a specific regex

specification.

Comment: Should we use a different character besides asterisk for the ANY. An asterisk alone would

mean the same as any.

Mary polled the audience: No error condition. We need a third option, but it is very complicated and will

not work in SQL.

Page | 74

CPE Dictionary and Language Specifications

Paul gave an overview of the Dictionary specification. The CPE dictionary will limit CPE names to those

who identify a single product as opposed to a set of products.

Acceptance criteria are to support the single product use case.

 No embedded wild cards are allowed.

 Names must have vendor, product and version, attribute values at a minimum. NA can be in the

version attribute where no version exists.

 Names permitted in the dictionary are only allowed if one doesn’t already exist at a lower level

of specificity.

Comment: In our use case we need to say this represents all products for e.g. Microsoft XP.

Response: You can express that as an applicability statement and when you resolve it to the dictionary,

the matching algorithm will retrieve that set of known products.

Comment: One of the use cases for CPE in XCCDF is a dictionary file that includes OVAL definition

applicability statements for sets of products. If we cannot express sets of products in the dictionary,

then I cannot write an OVAL definition because I can’t write a CPE that represents e.g. Acrobat 3.0.

Response: The dictionary needs to represent concrete products. Then we may need something in XCCDF

that is not in the dictionary.

Response: I could have rules that apply to different levels of specificity.

Response: Maybe we should relax the constraints in the dictionary. This is partially confounded by the

fact that we have metadata related to the identifier. We would like to create a metadata repository so

that you could define the kind of construct that you are describing. The same rules would not

necessarily apply.

Response: The scope of the dictionary for something that it was not intended to do. It should be a list of

concrete identifiers of real world products. Now that leaves a gap that needs to be filled. Now we are

forced to come up with the right solution for this problem.

Question: Would NIST commit to supporting a metadata repository for this purpose?

Response: We cannot commit right now, but it is possible.

Question: What about container relations of packages, suites, etc.?

Response: We are thinking about that problem, but don’t have time to address it in 2.3.

Response: This is a sustainable alternative to the current unsustainable combinatorial explosion of all

combinations of all products.

Page | 75

Comment: It is a common misconception that all names must be in the CPE Dictionary. There is no

requirement that everything that is expressed as a valid CPE Name. We are taking the step but 2.2

continues to exist. NIST does not plan to strip out the abstractions. Now the use of wild cards, you can

use an abstract names to match actual product names. However, we will lose the ability to associate an

OVAL definition that has any flavor that is in the dictionary.

Comment: Biggest problem is the deprecated process. If you match to a deprecated name, then it would

be nice to redirect to the set of current names. Can’t tell if it is an identifier or a match.

Response: Deprecation of abstract terms could be handled in the metadata repository.

Comment: deprecation does not mean that same thing anymore.

Response: There are two kinds of deprecation. When you learn more information, which you will

deprecate to the set of CPE names that match that, and the other because incorrect. We plan to capture

that in metadata.

Comment: We will not be able to use deprecated names to manage our product list because

deprecation means something different to us. It means no longer valid and points to a current valid CPE

if one exists.

Paul showed an example of deprecation when new information is discovered. It could be a set of more

specific product names or a single product name that it is deprecated to.

Comment: Won’t there be the same problem in the tiered DoD model? One sensor retrieves more

information about a product than another. Ultimately they get resolved to a single name.

Response: We don’t tell the sensor to use a more detailed name than it is capable of collecting. If I have

a sensor that gives me more info, then I collect both. Somebody is going to have to build an app to

determine which of the 20 names apply to the installed product.

Comment: What happens if the sensor has a bug that brings back the wrong version?

Response: Then that gets deprecated to 3.*, but we never allow multiple names to identify a single

product.

Comment: If we are excluding the more general term then searching becomes more complex. If you

search on 3.0* versus 3.*.0 would not match.

Response: That is currently an error condition. You are talking about a search use case rather than a

acceptance criteria.

Comment: First if I was searching for adobe acrobat 3.0 English. As the entries in the dictionary get more

detailed then it becomes harder to match.

Response: There may be a use case that gets every attribute match so that you could write your own

algorithm to match what you want.

Page | 76

Comment: We may not want to deprecate at the attribute level. If the vendor changes the product

doesn’t change.

Response: Maybe it makes sense to make real time deprecation be outside of the dictionary.

Comment: What is the intent of the dictionary?

Response: To represent a canonical reference of the most complete and current information that we

know.

Paul explained the CPE Dictionary data model:

They support a one-to-many relationship between a deprecated name and its replacement names.

Comment: There could be the reverse relationship.

Response: This is true. We will look into that.

Paul discusses backward compatibility issues.

 They are removing the NVD ID name. It is not useful for dictionary maintenance. Paul asked if

anyone cared about the ID and there was no response.

 They are also removing the old deprecation logic since it is one-to-one versus one-to-many.

Page | 77

Comment: Does the one to many deprecation accommodate the more detailed name that is submitted?

What happens when I add another one later?

Response: because it is not future proof and the same pattern doesn’t always hold.

Question: Is that kind of information useful for this data. Is there a base of users who would use this?

Response: For example, if a vulnerability applies to windows XP, then when you retrieve all service packs

only some of them will apply to the vulnerability.

Comment: If I go to more specific names. I am not going to look for an oval definition that goes to

service pack 1, etc. because it was deprecated when an English version.

There is an expectation of what the name means that is not resolved by deprecation. Could we use an

attribute that indicates the nature of the change.

Response: We may want to add a deprecation element, the reason for the change.

Brant requested that the audience read the specification and respond to the discussion list.

Matching Incomplete Information

Mary gave an overview of how the Core Team attempted to address the handling of sparse information

with the UNKNOWN logical value. The Core Team concluded that the problem was too complex to

handle within the construct of the CPE Name. For non-credentialed scanners, it seems like a good idea,

but it introduced too much complexity into the specification.

The proposed solution is something that they have only begun to work out. It is outside the scope of 2.3,

but they intend attack it quickly following the 2.3 release. We want to develop a community data model

that is developed by the community with a technical working group. The data model would be

implemented in a metadata catalog that is designed to capture the information around a CPE Name that

helps identify the incomplete name.

Comment: Right now there is a well defined set of attributes for the name. Will this be included in the

metadata catalog?

Response: Yes, this won’t change the CPE Name, rather it will add metadata that helps define and

manage the CPE Name. This would allow us to capture that ancillary information.

Question: Would the friendly name be in the dictionary?

Response: We don’t know yet what metadata belongs in the metadata catalog versus what belongs in

the dictionary.

Brant provided closing remarks for CPE. He summarized that Specification next steps and requested

comment.

